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Differential Geometry

Curves

Surfaces

Discrete Differential
Geometry

Polylines

Polyhedral Surfaces

Goal

Develop a geometric theory based on discrete objects.

How can we use it?

Discrete formulations can easily be turned into code

Obtain visually or structurally optimized meshes

Form-finding through local mesh constraints
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Planar and orthogonal
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Methods
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Planar Quadrilaterals and Conjugate Curves

How do we find the right quad mesh on a given shape?
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Planar Quadrilaterals and Conjugate Curves

Total Energy

E = EPQ + ωEfair

Energy term for planarity

EPQ =

|F |∑
f=1

4∑
j=1

(nf · (vfj − vfj−1))
2+

+

|F |∑
f=1

(nf · nf − 1)2

Fairness Energy term

EFair =
∑

i∈polyline

(2vi − vil − vir )
2

ω ≈ 0.001
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Planar Quadrilaterals and Conjugate Curves

Theorem

A quadrilateral mesh with planar faces is a discrete version of a conjugate
net of curves.
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Planar Quadrilaterals and Conjugate Curves

Definition of a conjugate net

The tangents of the curves of family A along any curve of family B form a
developable surface. (And vice versa)

I.e. Tangents intersect their
infinitesimal neighbor.
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Computing Conjugate Curves

Local Parametrization

f : R2 → R3

fu, fv . . . partial derivatives

n := fu × fv . . . normal vector

Fundamental Forms

I =

(
⟨fu, fu⟩ ⟨fu, fv ⟩
⟨fv , fu⟩ ⟨fv , fv ⟩

)
II =

(
⟨fuu, n⟩ ⟨fuv , n⟩
⟨fvu, n⟩ ⟨fvv , n⟩

)

Conjugate Directions

Directions a and b in the parameter domain are conjugate ⇔ aT II b = 0.
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Conjugate Curves Example

Idea

You can choose one family of curves and then compute the second family
by integrating the vector field of the conjugate directions.

Warning

The quads can become arbitrarily acute if the curves get close to
asymptotic (i.e. self-conjugate) curves.

⇒ Use principal directions
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Orthogonal Faces and Principal Curvature Lines

Curvature of a planar curve

The curvature is one over the radius of the osculating circle. This is the
circle that approximates the curve best.

The plane containing the
osculating circle is the osculating plane.
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Orthogonal Faces and Principal Curvature Lines

Definition

Principal curvature
(pc) lines are the
curves that follow the
directions of
maximal/minimal
normal curvature in a
surface.
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Orthogonal Faces and Principal Curvature Lines

Definition

Principal curvature (pc) lines are the curves
that follow the directions of
maximal/minimal normal curvature in a
surface.

Properties

PC lines are conjuagte and orthogonal

Any net of conjugate and orthogonal curves is the net of pc lines.

The pc directions are the eigenvectors of the shape operator.

The normals along pc lines form developable surfaces.
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Computing Principal Curvature Lines

Recall the fundamental forms

I =

(
⟨fu, fu⟩ ⟨fu, fv ⟩
⟨fv , fu⟩ ⟨fv , fv ⟩

)
II =

(
⟨fuu, n⟩ ⟨fuv , n⟩
⟨fvu, n⟩ ⟨fvv , n⟩

)

The principal directions in the parameter domain of f are the eigenvectors
of

S = (I)−1 II .
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Principal Remeshing Pipeline
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Principal Curvature Lines

Definition

Principal curvature (pc) lines are the curves that follow the directions of
maximal/minimal normal curvature in a surface.

Properties

PC lines are conjuagte and orthogonal

Any net of conjugate and orthogonal curves is the net of pc lines.

The pc directions are the eigenvectors of the shape operator.

The normals along pc lines form developable surfaces.
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Principal Curvature Lines
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Principal Curvature Lines
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Principal Curvature Lines

Parametrized Surfaces DDG for Geometry Processing SGP, Bilbao, 2025 16 / 38



Principal Curvature Meshes

Circular Meshes Conical Meshes
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Circular Meshes

Definition

A quad mesh where every face has
a circumcircle.

Properties

Invariant under Moebius
transformations

The sum of opposite angles in
a face equals π.

Allow a parallel offset
structure at constant vertex
distance.
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Computing Circular Meshes

Total Energy

E = Ecirc + EPQ + ωEfair

Energy term for circularity

Use the angle property in every face.

Ecirc =

|F |∑
f=1

(ωf 1 − ωf 2 + ωf 3 − ωf 4)
2
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Conical Meshes

Definition

All faces that share a vertex touch
a common cone.

Properties

Invariant under Laguerre
transformations

The sum of opposite angles in
every vertex is equal.

Allow a parallel offset
structure at constant face
distance.
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Computing Conical Meshes

Total Energy

E = Econe + EPQ + ωEfair

Energy term for conical meshes

Sum over all inner vertices

Econe =

|V |∑
i=1

(ωi1 − ωi2 + ωi3 − ωi4)
2
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Design Pipeline: Subdivision

Idea

Start with a coarse mesh and alternate between subdivision and feature
optimization.
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Design Pipeline: Transformations

Idea

Start with a well understood geometry. Compute everything in an
invariant way and then transform it.
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What is next?

Orthogonal Curves

Geodesics

Asymptotic Curves
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Discrete Orthogonality via Bi-Nets

[Bobenko, Schief, Suris, Techter 2018]
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Discrete Orthogonality via Bi-Nets

Idea: Use two nets to
describe the same
surface.

First order properties are
encoded in the relation
of dual edges.

Generalizes a lot of
existing discretizations.

Slightly too many
meshes...
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Bi-Nets naturally arise as diagonal nets
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Bi-Nets arise as diagonal nets

ϕ(u, v) . . . parametrization

ψ(u, v) = ϕ(u + v , u − v) . . . diag. para.

∂1ψ = ∂1ϕ+ ∂2ϕ ∂2ψ = ∂1ϕ− ∂2ϕ

∥∂1ψ∥ = ∥∂2ψ∥ ⇔ ∂1ϕ ⊥ ∂2ϕ
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Discrete Orthogonality

Definition

A quadrilateral net is orthogonal if its diagonal nets form a rhombic bi-net.
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Discrete Orthogonality

Definition

A quadrilateral net is orthogonal if the two diagonals in every quad have
equal length. [Wang, Pottmann 2022]
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Discrete Orthogonality

Discrete orthogonality

Defined via equal diagonal
lengths

Observable in the medial lines

Second order approximation

Possible for general
quadrilaterals
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Applications: Developable Surfaces

Figure: Walt Disney Concert Hall by Frank O. Gehry
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Applications: Developable Surfaces
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Applications: Developable Surfaces

Idea

Use orthogonal geodesics. [Rabinovich, Hoffmann, Sorkine-Hornung 2018]

Definition

Geodesics are locally the shortest path between two points. Their
osculating plane is orthogonal to the surface.

Parametrized Surfaces DDG for Geometry Processing SGP, Bilbao, 2025 33 / 38



Applications: Developable Surfaces

Idea

Use orthogonal geodesics. [Rabinovich, Hoffmann, Sorkine-Hornung 2018]

Gauss-Bonnet Theorem

∫
Q
K dA+

∫
∂Q
κg ds = 2π −

4∑
i=1

θi
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Applications: Developable Surfaces

Total Energy

E = EOrtho. + ω1Efair + EGnet
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Applications: Developable Surfaces

Total Energy

E = EOrtho. + ω1Efair + EGnet

Energy term for orthogonality

EOrtho. =

|F |∑
f=1

(
∥vf 1 − vf 3∥2 − ∥vf 2 − vf 4∥2

)2
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Applications: Developable Surfaces

Total Energy

E = EOrtho. + ω1Efair + EGnet

Energy term for geodesics

EGnet =

|V |∑
i=1

((ei1 · ei2 − ei3 · ei4)2

+ (ei2 · ei3 − ei4 · ei1)2)

+

|V |∑
i=1

4∑
j=1

(
eij −

vij − vi
∥vij − vi∥

)2
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Applications: Developable Surfaces
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Applications: Minimal Surfaces
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Applications: Minimal Surfaces

Idea

Use an orthogonal asymptotic
net.

Definition

A curve is asymptotic ⇔ its
osculating plane is the
tangent plane.

Why is it minimal?

tan(α/2)2 = −κ1/κ2

⇒ α = π/2 ⇔ κ1 + κ2 = 0
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Applications: Minimal Surfaces

Total Energy

E = EOrtho. + EAnet + ω1Efair

Energy term for A-nets

EAnet =

|V |∑
i=1

4∑
j=1

(ni · (vij − vi ))
2

+

|V |∑
i=1

(ni · ni − 1)2
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Applications: Minimal Surfaces

Total Energy

E = EOrtho. + EAnet + ω1Efair
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Applications: Asymptotic Gridshell
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