DDG For Geometry Processing

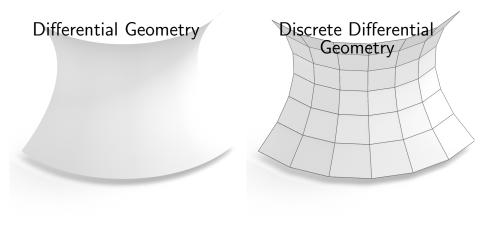
Part I: Parametrized Surfaces - Felix Dellinger (TU Vienna) Part II: Higher Geometries - Niklas Affolter (TU Vienna)

SGP, Bilbao, 2025

Parametrized Surfaces

DDG for Geometry Processing

1/38

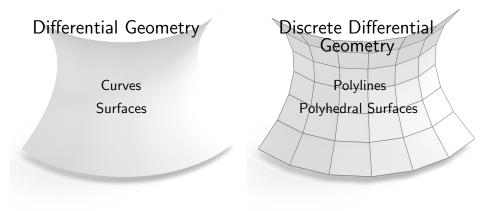


Parametrized Surfaces	DDG for Geometry Processing	
-----------------------	-----------------------------	--

SGP, Bilbao, 2025 2,

Э

< □ > < □ > < □ > < □ > < □ >



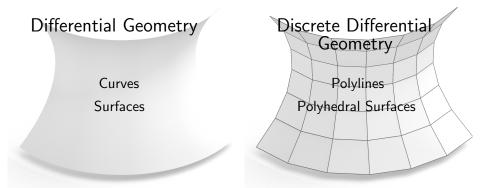
Para	metrized	Surfaces

Э

990

▶ < ∃ ▶

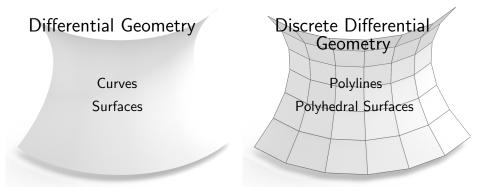
< 口 > < 同



Goal

Develop a geometric theory based on discrete objects.

∃ ► < ∃ ►</p>



Goal

Develop a geometric theory based on discrete objects.

How can we use it?

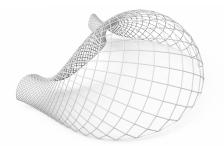
- Discrete formulations can easily be turned into code
- Obtain visually or structurally optimized meshes
- Form-finding through local mesh constraints

Objectives

- Planar and orthogonal faces
- Invariant mesh properties
- Offset structures
- Developable and minimal surfaces

Methods

- Optimization
- Smooth curves
- Transformations
- Subdivision



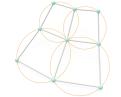
< ∃ >

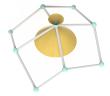
Objectives

- Planar and orthogonal faces
- Invariant mesh properties
- Offset structures
- Developable and minimal surfaces

Methods

- Optimization
- Smooth curves
- Transformations
- Subdivision





Э

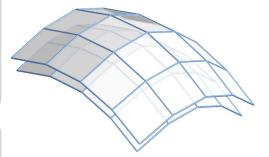
3/38

Objectives

- Planar and orthogonal faces
- Invariant mesh properties
- Offset structures
- Developable and minimal surfaces

Methods

- Optimization
- Smooth curves
- Transformations
- Subdivision



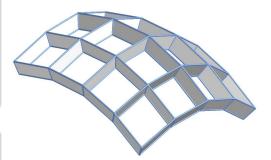
Э

Objectives

- Planar and orthogonal faces
- Invariant mesh properties
- Offset structures
- Developable and minimal surfaces

Methods

- Optimization
- Smooth curves
- Transformations
- Subdivision



< ∃ >

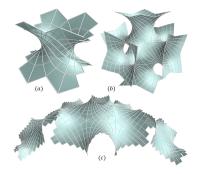
Э

Objectives

- Planar and orthogonal faces
- Invariant mesh properties
- Offset structures
- Developable and minimal surfaces

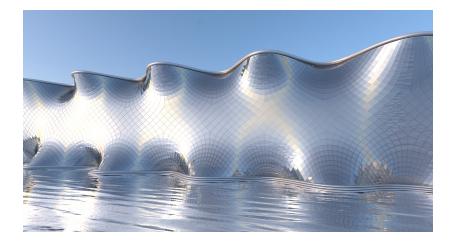
Methods

- Optimization
- Smooth curves
- Transformations
- Subdivision

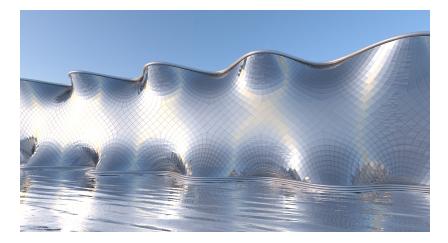


< ⊒ >

Param



		- U P	이야 한 이 문 한 이 문 한 이 문	~) Q (~
metrized Surfaces	DDG for Geometry Processing		SGP, Bilbao, 2025	4 / 38



How do we find the right quad mesh on a given shape?

Parametrized Surfaces

DDG for Geometry Processing

▶ < 콜 ▶ < 콜 ▶ 클 SGP, Bilbao, 2025

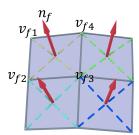
Total Energy

Parame

 $E = E_{PQ} + \omega E_{fair}$

Energy term for planarity

$$egin{split} E_{PQ} &= \sum_{f=1}^{|F|} \sum_{j=1}^4 (n_f \cdot (v_{fj} - v_{fj-1}))^2 + \ &+ \sum_{f=1}^{|F|} (n_f \cdot n_f - 1)^2 \end{split}$$



) 4 (
etrized Surfaces	DDG for Geometry Processing	SGP, Bilbao, 2025	5 / 38

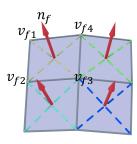
Total Energy

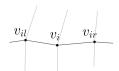
 $E = E_{PQ} + \omega E_{fair}$

Energy term for planarity $E_{PQ} = \sum_{f=1}^{|F|} \sum_{j=1}^{4} (n_f \cdot (v_{fj} - v_{fj-1}))^2 + \sum_{f=1}^{|F|} (n_f \cdot n_f - 1)^2$

Fairness Energy term

$$E_{Fair} = \sum_{i \in \text{ polyline}} (2v_i - v_{il} - v_{ir})^2$$





Parametrized Surfaces

DDG for Geometry Processing

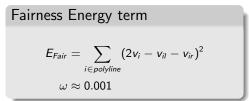
<ロ ト < 部 ト < 注 ト < 注 ト SGP, Bilbao, 2025

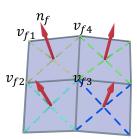
3

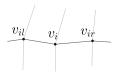
Total Energy

 $E = E_{PQ} + \omega E_{fair}$

Energy term for planarity $E_{PQ} = \sum_{f=1}^{|F|} \sum_{j=1}^{4} (n_f \cdot (v_{fj} - v_{fj-1}))^2 + \sum_{f=1}^{|F|} (n_f \cdot n_f - 1)^2$



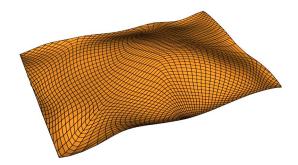




Parametrized Surfaces

DDG for Geometry Processing

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ SGP, Bilbao, 2025

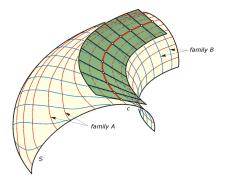


Theorem

A quadrilateral mesh with planar faces is a discrete version of a conjugate net of curves.

Parametrized Surfaces	DDG for Geometry Processing

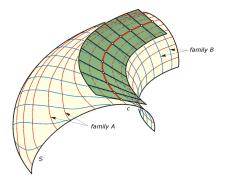
SGP, Bilbao, 2025 6 / 38



Definition of a conjugate net

The tangents of the curves of family A along any curve of family B form a developable surface. (And vice versa)

Parametrized Surfaces	DDG for Geometry Processing	SGP, Bilbao, 2025	7/38
		< 口 > < 同 > < 回 > < 回 >	5 9 9 C



Definition of a conjugate net

The tangents of the curves of family A along any curve of family B form a developable surface. (And vice versa) I.e. Tangents intersect their infinitesimal neighbor.

		《口》《聞》《臣》《臣》	E Sac
Parametrized Surfaces	DDG for Geometry Processing	SGP, Bilbao, 2025	7 / 38

Computing Conjugate Curves

Local Parametrization

 $f : \mathbb{R}^2 \to \mathbb{R}^3$ $f_u, f_v \dots$ partial derivatives $n := f_u \times f_v \dots$ normal vector

Sac

イロト イボト イヨト イヨト 二日

Computing Conjugate Curves

Local Parametrization

$$f : \mathbb{R}^2 \to \mathbb{R}^3$$

 $f_u, f_v \dots$ partial derivatives
 $n := f_u \times f_v \dots$ normal vector

Fundamental Forms

$$\mathsf{I} = \begin{pmatrix} \langle f_u, f_u \rangle & \langle f_u, f_v \rangle \\ \langle f_v, f_u \rangle & \langle f_v, f_v \rangle \end{pmatrix} \qquad \mathsf{II} = \begin{pmatrix} \langle f_{uu}, n \rangle & \langle f_{uv}, n \rangle \\ \langle f_{vu}, n \rangle & \langle f_{vv}, n \rangle \end{pmatrix}$$

Parame	trized	Surfaces

3

990

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

Computing Conjugate Curves

Local Parametrization

$$f : \mathbb{R}^2 \to \mathbb{R}^3$$

 $f_u, f_v \dots$ partial derivatives
 $n := f_u \times f_v \dots$ normal vector

Fundamental Forms

$$\mathsf{I} = \begin{pmatrix} \langle f_u, f_u \rangle & \langle f_u, f_v \rangle \\ \langle f_v, f_u \rangle & \langle f_v, f_v \rangle \end{pmatrix} \qquad \mathsf{II} = \begin{pmatrix} \langle f_{uu}, n \rangle & \langle f_{uv}, n \rangle \\ \langle f_{vu}, n \rangle & \langle f_{vv}, n \rangle \end{pmatrix}$$

Conjugate Directions

Directions a and b in the parameter domain are conjugate $\Leftrightarrow a^T \amalg b = 0$.

Parametrized Surf	aces
-------------------	------

イロト 不同下 イヨト イヨト

Э

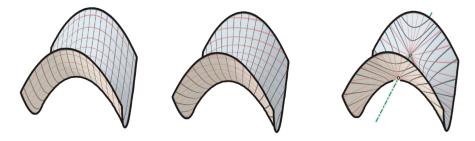
Conjugate Curves Example

Idea

You can choose one family of curves and then compute the second family by integrating the vector field of the conjugate directions.

5 N A 5 N

Conjugate Curves Example



Idea

You can choose one family of curves and then compute the second family by integrating the vector field of the conjugate directions.

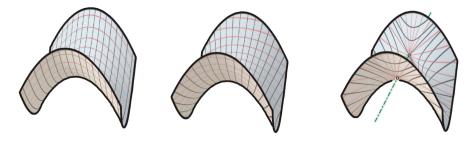
Warning

The quads can become arbitrarily acute if the curves get close to asymptotic (i.e. self-conjugate) curves.

Parametrized Surfaces

DDG for Geometry Processing

Conjugate Curves Example



Idea

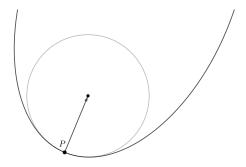
You can choose one family of curves and then compute the second family by integrating the vector field of the conjugate directions.

Warning

The quads can become arbitrarily acute if the curves get close to asymptotic (i.e. self-conjugate) curves. \Rightarrow Use principal directions

Parametrized Surfaces

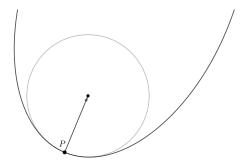
DDG for Geometry Processing



Curvature of a planar curve

The curvature is one over the radius of the osculating circle. This is the circle that approximates the curve best.

circle that approximates	the curve best.			J
		《 ㅁ ▷ 《 @ ▷ 《 홈 ▷ 《 홈 ▷	■ ∽ ۹	. C
Parametrized Surfaces	DDG for Geometry Processing	SGP, Bilbao, 2025	10 / 3	38



Curvature of a planar curve

The curvature is one over the radius of the osculating circle. This is the circle that approximates the curve best. The plane containing the osculating circle is the osculating plane.

Parametrized Surfaces

DDG for Geometry Processing

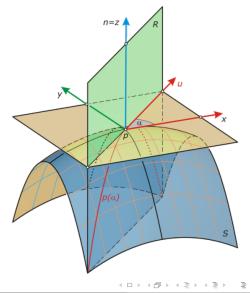
SGP, Bilbao, 2025

5 10/38

Sac

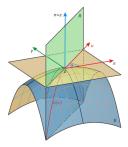
Definition

Principal curvature (pc) lines are the curves that follow the directions of maximal/minimal normal curvature in a surface.



Definition

Principal curvature (pc) lines are the curves that follow the directions of maximal/minimal normal curvature in a surface.



Properties

- PC lines are conjuagte and orthogonal
- Any net of conjugate and orthogonal curves is the net of pc lines.
- The pc directions are the eigenvectors of the shape operator.
- The normals along pc lines form developable surfaces.

Parametrized Surfaces	Parame	trized	Surfaces
-----------------------	--------	--------	----------

Computing Principal Curvature Lines

Recall the fundamental forms

$$I = \begin{pmatrix} \langle f_u, f_u \rangle & \langle f_u, f_v \rangle \\ \langle f_v, f_u \rangle & \langle f_v, f_v \rangle \end{pmatrix} \qquad II = \begin{pmatrix} \langle f_{uu}, n \rangle & \langle f_{uv}, n \rangle \\ \langle f_{vu}, n \rangle & \langle f_{vv}, n \rangle \end{pmatrix}$$

Parametrized Surfaces	DDG for Geometry Processing	SGP, Bilbao, 2025	13 / 38

Computing Principal Curvature Lines

Recall the fundamental forms

Par

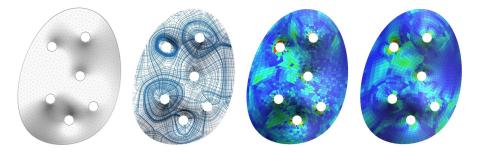
$$I = \begin{pmatrix} \langle f_u, f_u \rangle & \langle f_u, f_v \rangle \\ \langle f_v, f_u \rangle & \langle f_v, f_v \rangle \end{pmatrix} \qquad II = \begin{pmatrix} \langle f_{uu}, n \rangle & \langle f_{uv}, n \rangle \\ \langle f_{vu}, n \rangle & \langle f_{vv}, n \rangle \end{pmatrix}$$

The principal directions in the parameter domain of f are the eigenvectors of

$$S = (\mathsf{I})^{-1} \, \mathsf{II} \, .$$

		- 1		1		< ≣ >	-	4) Q (4
arametrized Surfaces	DDG for Geometry Processing		S	GP, E	Bilba	o, 2025		13 / 38

Principal Remeshing Pipeline



		+ 다 > < 쿱 > < 볼 > < 볼 > · 볼	$\mathcal{O} \land \mathcal{O}$
Parametrized Surfaces	DDG for Geometry Processing	SGP, Bilbao, 2025	14 / 38

Definition

Principal curvature (pc) lines are the curves that follow the directions of maximal/minimal normal curvature in a surface.

Properties

- PC lines are conjuagte and orthogonal
- Any net of conjugate and orthogonal curves is the net of pc lines.
- The pc directions are the eigenvectors of the shape operator.
- The normals along pc lines form developable surfaces.

∃ ► < ∃ ►</p>

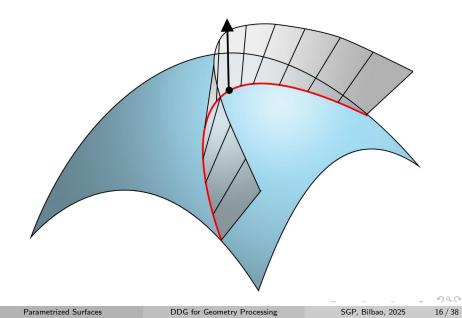
Definition

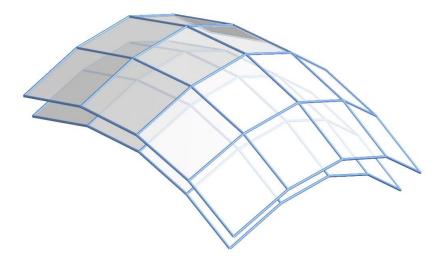
Principal curvature (pc) lines are the curves that follow the directions of maximal/minimal normal curvature in a surface.

Properties

- PC lines are conjuagte and orthogonal
- Any net of conjugate and orthogonal curves is the net of pc lines.
- The pc directions are the eigenvectors of the shape operator.
- The normals along pc lines form developable surfaces.

∃ ► < ∃ ►</p>



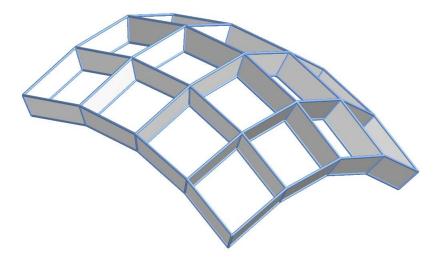


Ξ

990

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

Parametrized Surfaces

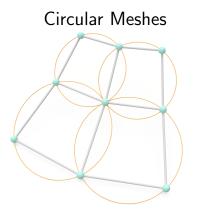


	 · · 🖵				_	2-40
DDG for Geometry Processing		SGP,	Bilbac	, 2025		16 / 38

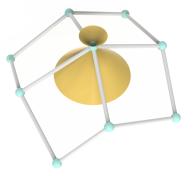
1

SOR

Principal Curvature Meshes



Conical Meshes



Sar

					_	
faces	DDG for Geometry Processing	SGF	, Bilbao,	2025		17 / 38

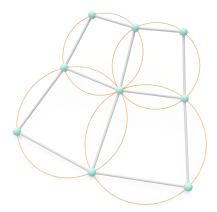
Circular Meshes

Definition

A quad mesh where every face has a circumcircle.

Properties

- Invariant under Moebius transformations
- The sum of opposite angles in a face equals π .
- Allow a parallel offset structure at constant vertex distance.



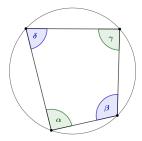
Э

Circular Meshes

Definition

A quad mesh where every face has a circumcircle.

- Invariant under Moebius transformations
- The sum of opposite angles in a face equals *π*.
- Allow a parallel offset structure at constant vertex distance.

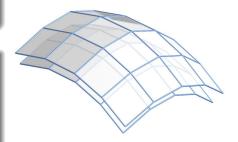


Circular Meshes

Definition

A quad mesh where every face has a circumcircle.

- Invariant under Moebius transformations
- The sum of opposite angles in a face equals *π*.
- Allow a parallel offset structure at constant vertex distance.



Computing Circular Meshes

Total Energy

P

 $E = \frac{E_{circ}}{E_{PQ}} + \omega E_{fair}$

Energy term for circularity

Use the angle property in every face.

$$E_{circ} = \sum_{f=1}^{|F|} (\omega_{f1} - \omega_{f2} + \omega_{f3} - \omega_{f4})^2$$

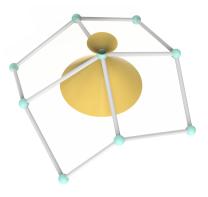
		《曰》《卽》《言》《言》	E Sac
Parametrized Surfaces	DDG for Geometry Processing	SGP, Bilbao, 2025	19 / 38

Conical Meshes

Definition

All faces that share a vertex touch a common cone.

- Invariant under Laguerre transformations
- The sum of opposite angles in every vertex is equal.
- Allow a parallel offset structure at constant face distance.

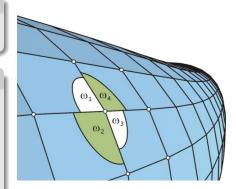


Conical Meshes

Definition

All faces that share a vertex touch a common cone.

- Invariant under Laguerre transformations
- The sum of opposite angles in every vertex is equal.
- Allow a parallel offset structure at constant face distance.

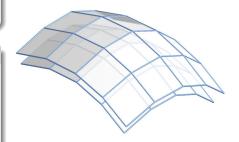


Conical Meshes

Definition

All faces that share a vertex touch a common cone.

- Invariant under Laguerre transformations
- The sum of opposite angles in every vertex is equal.
- Allow a parallel offset structure at constant face distance.



Computing Conical Meshes

Total Energy

 $E = E_{cone} + E_{PQ} + \omega E_{fair}$

Energy term for conical meshes Sum over all inner vertices

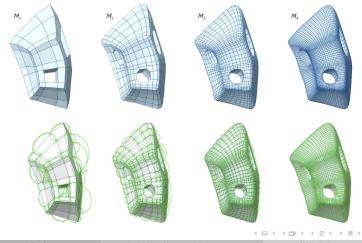
$$E_{cone} = \sum_{i=1}^{|V|} (\omega_{i1} - \omega_{i2} + \omega_{i3} - \omega_{i4})^2$$

		《曰》《圖》《臣》《臣》	≡ ∽ < ぐ
Parametrized Surfaces	DDG for Geometry Processing	SGP, Bilbao, 2025	21 / 38

Design Pipeline: Subdivision

Idea

Start with a coarse mesh and alternate between subdivision and feature optimization.

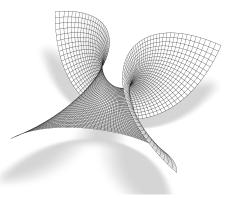


DDG for Geometry Processing

Design Pipeline: Transformations

Idea

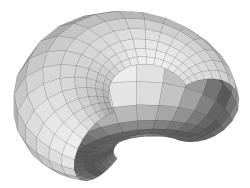
Start with a well understood geometry. Compute everything in an invariant way and then transform it.



Design Pipeline: Transformations

Idea

Start with a well understood geometry. Compute everything in an invariant way and then transform it.



			€
Parametrized Surfaces	DDG for Geometry Processing	SGP, Bilbao, 2025	23 / 38

Design Pipeline: Transformations

Idea

Par

Start with a well understood geometry. Compute everything in an invariant way and then transform it.

		< □	▶ ◀ 🗗 ▶ ◀ 톤 ▶ ◀ 톤 ▶	$\equiv \mathcal{O} \land \mathcal{O}$
rametrized Surfaces	DDG for Geometry Processing		SGP, Bilbao, 2025	23 / 38

What is next?

- Orthogonal Curves
- Geodesics
- Asymptotic Curves

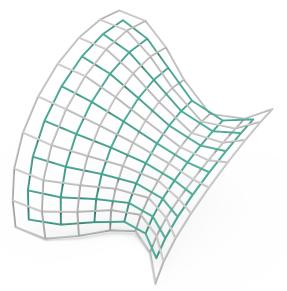
Para	metrized	Surfaces	

3

990

ヨト・イヨト

< □ > < 同 >



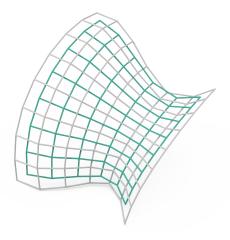
Parametrized Surfaces

DDG for Geometry Processing

Bobenko, Schief, Suris, Techter 2018}∾ SGP, Bilbao, 2025

25 / 38

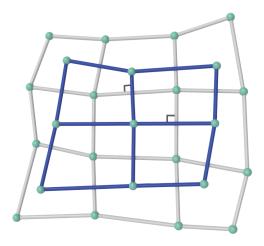
- Idea: Use two nets to describe the same surface.
- First order properties are encoded in the relation of dual edges.
- Generalizes a lot of existing discretizations.
- Slightly too many meshes...



Э

26 / 38

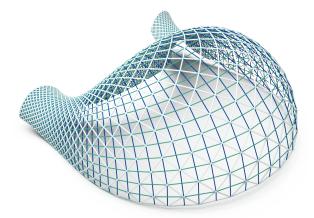
- Idea: Use two nets to describe the same surface.
- First order properties are encoded in the relation of dual edges.
- Generalizes a lot of existing discretizations.
- Slightly too many meshes...



Э

- Idea: Use two nets to describe the same surface.
- First order properties are encoded in the relation of dual edges.
- Generalizes a lot of existing discretizations.
- Slightly too many meshes...

Bi-Nets naturally arise as diagonal nets



	Surfaces

DDG for Geometry Processing

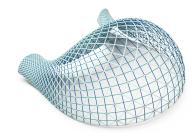
SGP, Bilbao, 2025

 $\exists \rightarrow$

< □ > < 同 >

Э

 $\phi(u, v) \dots$ parametrization

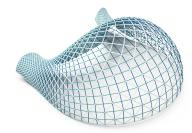


		< 그 > < 곱 > < 돌 > < 돌 > < 돌 > < 돌	$\mathcal{O} \land \mathcal{O}$
Parametrized Surfaces	DDG for Geometry Processing	SGP, Bilbao, 2025	28 / 38

$$\phi(u,v)\dots$$
 parametrization
 $\psi(u,v)=\phi(u+v,u-v)\dots$ diag. para.

DDG for (

Parametrized Surfaces



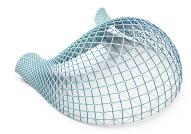
Geometry Processing	SGP, Bilbao, 2025	28 / 38
---------------------	-------------------	---------

<ロト < 団ト < 団ト < 団ト

Э

900

$$\phi(u, v) \dots$$
 parametrization
 $\psi(u, v) = \phi(u + v, u - v) \dots$ diag. para.
 $\partial_1 \psi = \partial_1 \phi + \partial_2 \phi \quad \partial_2 \psi = \partial_1 \phi - \partial_2 \phi$

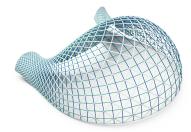


Parametrized	Surfaces

Э

990

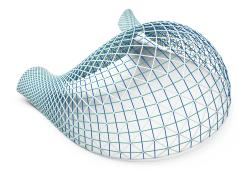
$$\begin{split} \phi(u,v)\dots \text{parametrization} \\ \psi(u,v) &= \phi(u+v,u-v)\dots \text{diag. para.} \\ \partial_1\psi &= \partial_1\phi + \partial_2\phi \quad \partial_2\psi = \partial_1\phi - \partial_2\phi \\ \|\partial_1\psi\| &= \|\partial_2\psi\| \quad \Leftrightarrow \quad \partial_1\phi \perp \partial_2\phi \end{split}$$



Э

990

< - > < - >

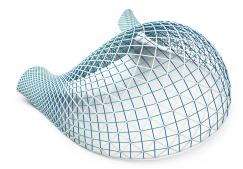


Definition

A quadrilateral net is orthogonal if its diagonal nets form a rhombic bi-net.

D	and the second second	C	
Param	etrized	Surt	aces

DDG for Geometry Processing



Definition

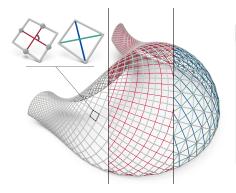
A quadrilateral net is orthogonal if the two diagonals in every quad have equal length. [Wang, Pottmann 2022]

Parametrized Surfaces

DDG for Geometry Processing

▶ 《 콜 ▶ 《 콜 ▶ 콜 SGP, Bilbao, 2025

29 / 38



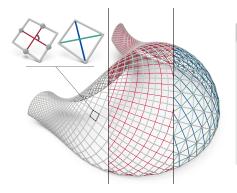
Discrete orthogonality

• Defined via equal diagonal lengths

< 口 > < 同

Э

Sac

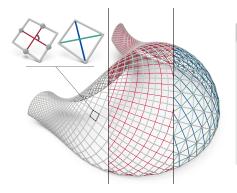


Discrete orthogonality

< 口 > < 同

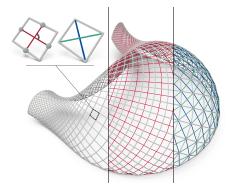
- Defined via equal diagonal lengths
- Observable in the medial lines

Э



Discrete orthogonality

- Defined via equal diagonal lengths
- Observable in the medial lines
- Second order approximation



Discrete orthogonality

- Defined via equal diagonal lengths
- Observable in the medial lines
- Second order approximation
- Possible for general quadrilaterals

Figure: Walt Disney Concert Hall by Frank O. Gehry

Parametrized Surfaces

DDG for Geometry Processing

SGP, Bilbao, 2025

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

Э

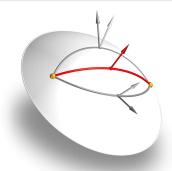
Parametrized Surfaces

DDG for Geometry Processing

SGP, Bilbao, 2025

Idea

Use orthogonal geodesics. [Rabinovich, Hoffmann, Sorkine-Hornung 2018]



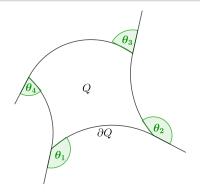
Definition

Geodesics are locally the shortest path between two points. Their osculating plane is orthogonal to the surface.

	Parametriz	zed Surfaces	
--	------------	--------------	--

Idea

Use orthogonal geodesics. [Rabinovich, Hoffmann, Sorkine-Hornung 2018]



Gauss-Bonnet Theorem
$$\int_Q K \, \mathrm{dA} + \int_{\partial Q} \kappa_g \, \mathrm{ds} = 2\pi - \sum_{i=1}^4 \theta_i$$

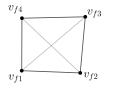
			= +) <(+
Parametrized Surfaces	DDG for Geometry Processing	SGP, Bilbao, 2025	33 / 38

Total Energy $E = E_{Ortho.} + \omega_1 E_{fair} + E_{Gnet}$

Pa

arametrized Surfaces	DDG for Geometry Processing	SGP, Bilbao, 2025	34 / 38

Total Energy $E = E_{Ortho.} + \omega_1 E_{fair} + E_{Gnet}$



Par

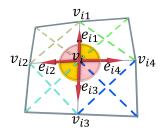
Energy term for orthogonality $E_{Ortho.} = \sum_{f=1}^{|F|} \left(\|v_{f1} - v_{f3}\|^2 - \|v_{f2} - v_{f4}\|^2 \right)^2$

지금 지 기례 지 가 같 지 않 다.

-

arametrized Surfaces	DDG for Geometry Processing	SGP, Bilbao, 2025	34 / 38

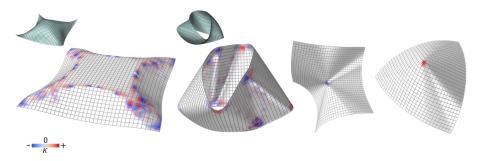
Total Energy $E = E_{Ortho.} + \omega_1 E_{fair} + E_{Gnet}$



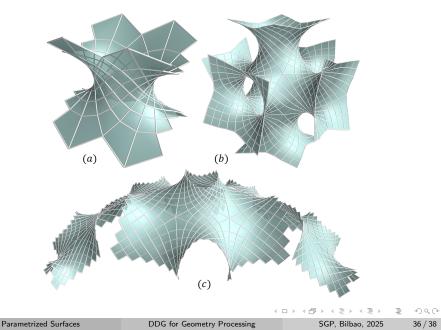
Energy term for geodesics

$$E_{Gnet} = \sum_{i=1}^{|V|} ((e_{i1} \cdot e_{i2} - e_{i3} \cdot e_{i4})^2 + (e_{i2} \cdot e_{i3} - e_{i4} \cdot e_{i1})^2) + \sum_{i=1}^{|V|} \sum_{j=1}^{4} \left(e_{ij} - \frac{v_{ij} - v_i}{\|v_{ij} - v_i\|} \right)^2$$

		《 ㅁ ▷ 《 녑' ▷ 《 튼 ▷ 《 튼 ▷	≡ ∞) Q (♥
Parametrized Surfaces	DDG for Geometry Processing	SGP, Bilbao, 2025	34 / 38



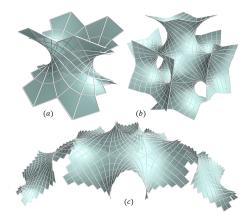
		《 ㅁ ▷ 《 @ ▷ 《 흔 ▷ 《 흔 ▷	$\equiv \mathcal{O} \land \mathcal{O}$
Parametrized Surfaces	DDG for Geometry Processing	SGP, Bilbao, 2025	35 / 38



Idea

Use an orthogonal asymptotic net.

Parametrized Surf



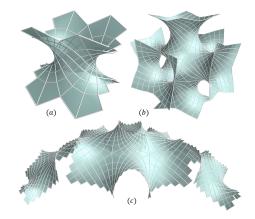
		 	ч 🗆 Р	P	= ^ ^	= -	-	*) 4 (*
faces	DDG for Geometry Processing		:	SGP,	Bilbao	, 2025		37 / 38

Idea

Use an orthogonal asymptotic net.

Definition

A curve is asymptotic \Leftrightarrow its osculating plane is the tangent plane.

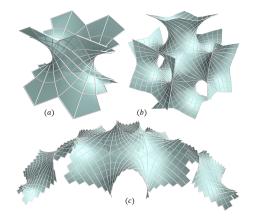


Idea

Use an orthogonal asymptotic net.

Definition

A curve is asymptotic \Leftrightarrow its osculating plane is the tangent plane.



Why is it minimal? $\tan(\alpha/2)^2 = -\kappa_1/\kappa_2$

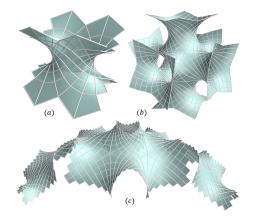
Parametrized S	Surfaces
----------------	----------

Idea

Use an orthogonal asymptotic net.

Definition

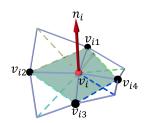
A curve is asymptotic \Leftrightarrow its osculating plane is the tangent plane.



Why is it minimal?

$$\tan(\alpha/2)^2 = -\kappa_1/\kappa_2 \quad \Rightarrow \quad \alpha = \pi/2 \iff \kappa_1 + \kappa_2 = 0$$

Total Energy $E = E_{Ortho.} + E_{Anet} + \omega_1 E_{fair}$



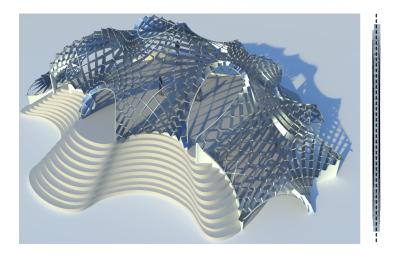
Energy term for A-nets $E_{Anet} = \sum_{i=1}^{|V|} \sum_{j=1}^{4} (n_i \cdot (v_{ij} - v_i))^2$ $+ \sum_{i=1}^{|V|} (n_i \cdot n_i - 1)^2$

		·····························	$\mathcal{O} \land \mathcal{O}$
Parametrized Surfaces	DDG for Geometry Processing	SGP, Bilbao, 2025	38 / 38

Total Energy $E = E_{Ortho.} + E_{Anet} + \omega_1 E_{fair}$

			$\equiv \mathcal{O} \land \mathcal{O}$
Parametrized Surfaces	DDG for Geometry Processing	SGP, Bilbao, 2025	38 / 38

Applications: Asymptotic Gridshell



Parametrized Surfaces

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <