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Organization

• Knitting Background
• What is Knitting and Why is it Important?
• Why is Knitting Geometry?

• Computational Knitting Representations and Algorithms
• Fabric Level
• Stitch Level
• Yarn Level

• Open Problems in Computational Knitting



Aardman Animations
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Sources: Nike, Gymshark, Peregrine Clothing, Museum Outlets, Alexandre Kaspar

https://blog.jdsports.com/what-is-flyknit-technology/
https://www.gymshark.com/products/gymshark-warp-knit-leggings-black-aw22
https://robbreport.com/style/fashion/gallery/best-knit-t-shirts-men-2949309/doppiaa-knitted-tshirt-via-the-rake-copy/
https://museumoutlets.com/great-baby-gifts/rainbow-socks-for-kiddos#gsc.tab=0
https://docs.google.com/presentation/d/19DEjd1yx_-BvO5CkneRb-noTLzZ4-SZd-EuX_4vQi-M/edit?usp=sharing


Sources: Nike, Gymshark, Peregrine Clothing, Museum Outlets, Alexandre Kaspar

https://blog.jdsports.com/what-is-flyknit-technology/
https://www.gymshark.com/products/gymshark-warp-knit-leggings-black-aw22
https://robbreport.com/style/fashion/gallery/best-knit-t-shirts-men-2949309/doppiaa-knitted-tshirt-via-the-rake-copy/
https://museumoutlets.com/great-baby-gifts/rainbow-socks-for-kiddos#gsc.tab=0
https://docs.google.com/presentation/d/19DEjd1yx_-BvO5CkneRb-noTLzZ4-SZd-EuX_4vQi-M/edit?usp=sharing


Technical Knitting Applications

Luo et al. 2022

Wicaksono et al. 2023

Kim et al. 2022

Liu et al. 2022
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Saint-Gobain Aerospace

Zaha Hadid



Hand Knitting

Images: Buzzfeed

https://www.buzzfeed.com/alannaokun/the-ultimate-guide-to-knitting


Knitting (The Process)

9

Active Loops: would 

unravel without needles 

holding them

Incoming yarn: pulled 

through active loops to 

make new loops

In progress fabric: 

stable loops that 

won’t unravel



1

0

Tekstil Sayfasi

Active Loops

In progress fabric

Incoming yarn
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1

Tekstil Sayfasi



Whole garment Knitting

• “Whole garment” machines are akin to 3D printing a garment
• Machine knitting is much faster and more precise 

• (though less versatile than hand knitting)
Video: Shima Seiki

https://youtu.be/kZE8rvPYbII?si=qbH8emD7IjW_FwdD


Sheets & Cylinders

• Two basic topological structures that can be joined to make almost 
any surface: sheets and cylinders

Video: Shima Seiki, NHK

https://youtu.be/kZE8rvPYbII?si=qbH8emD7IjW_FwdD
https://youtu.be/y6wHl0Xtxfw?si=okRXcvu_edulcFxJ


?



Curvature in Knitting

Short Row

Increase

Decrease



Shaping

Short Row



Why is Knitting Computer Graphics?
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Organization

• Knitting Background
• What is Knitting and Why is it Important?
• Why is Knitting Geometry?

• Computational Knitting Representations and Algorithms
• Fabric Level
• Stitch Level
• Yarn Level

• Open Problems in Computational Knitting



Knitting Levels of Detail

Fabric Stitch Yarn



Knitting Levels of Abstraction

Fabric Stitch Yarn



Knitting Levels of Abstraction

Fabric Stitch Yarn



Knitting Levels of Abstraction

Fabric Stitch Yarn



Knitting Levels of Abstraction

Fabric Stitch Yarn



A Brief History of Knit 

Representations



Knitting Levels of Abstraction

Fabric Stitch Yarn

Thin-Sheet Simulation
Sperl, et al. 2020

Fast but simplifiedDetailed but slow

Kaldor, et al. 2008

Yarn-Level Simulation



Knitting Levels of Abstraction

Fabric Stitch Yarn



Stitch-Level Abstractions: Meshes

Yuksel et al 2012



Stitch-Level Abstraction: Graphs

Nayaranan et al 2018



Visual Stitch-Level Programming

Wu et al 2019 (SIGGRAPH)Narayanan et al 2019 (SIGGRAPH)



Knitting Levels of Abstraction

Fabric Stitch Yarn



Stitches Aren’t the Whole Story

Image: HAHA MAMA Clothing



Stitches Aren’t the Whole Story

Image: HAHA MAMA Clothing
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Computation Design of Knit Templates (Siggraph 2022)



Knitting is Customizable

34Image: Kim Scarborough



Knitting is Discrete

35

Stitch
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Knit Design Axes

ShapingTexture Composition Shape Variation
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Knit Templates

High-Level

Specifications

Automatic

Generation
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Overview

Data Structure Design Tool
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Coarse Knit Meshes

Why Patches?Why Quads?



40

Insight I: Why Patches?

[Narayanan et al. 2018, 2019][Our Work]

High-Level Constraints Low-Level Constraints

Proof
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Insight II: Why Quads?

Sheets

Tubes

Composition

-1/2 (x2)

-1/4 (x4)
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Composition Rules

Images: emmajane
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Composition Rules

Splitting / Merging Closing Opening Patch
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A Note About Singularities

Lyon et al 2021

Fabric Level Stitch Level
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Overview

Data Structure Design Tool
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Design Tool Overview

Input Instance

Patch Design Patch Labeling

Consistency Correctness
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Patch Design

Correspondence

Joint MIQ
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Design Tool Overview

Input Instance

Patch Design Patch Labeling

Consistency Correctness
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Patch Labeling
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Patch Labels

Knit Direction

Seams

Allowed Shaping

Texture

Shaping Distribution
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Results



53

Composition Rules

No Rules Composition Rules
x2 x4 x4
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Shape Variation
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Future: Better Tesselations, Bigger Patches



Knitting Levels of Abstraction

Fabric Stitch Yarn



Stitch-level abstraction

• Characterized by knit graphs or quad-dominant stitch meshes
• Nodes correspond to individual stitches (roughly)

• Aim is to achieve consistent element size and geometric fidelity

Images: Curl Quantization for Automatic Placement of Knit Singularities, Mitra et al. 

https://rahulmitra.xyz/projects/curl_quantization/


Stitch-level abstraction

• Non-quad elements arise to denote shaping operations



Shaping via stitch irregularities/singularities

• Knit graph of Autoknit has a 
node for every pair of 
stacked stitches, and edges 
of course and wale type

• Singularities correspond to 
non-quad faces in the mesh

• Increase
• Decrease
• Short Row Ends



Short row shaping example



“Whole-garment” setting

• Aim is a knit structure that is fully machine-knittable 
• Any seams or holes that need to be sewn together in post-

processing have had their positions fixed

Hole to be sewn

Holes to be sewn

Images: Curl Quantization for Automatic Placement of Knit Singularities, Mitra et al. 

https://rahulmitra.xyz/projects/curl_quantization/


Knitting time function

• The time function                             
encodes general knitting direction and 
dependency between course rows

• Level sets correspond roughly to 
desired course rows

• Approximate wale direction given by 
the gradient

• User input or harmonic interpolation

Image: Autoknit, Narayanan et al. 

https://textiles-lab.github.io/publications/2018-autoknit/


Helix-free constraint (Autoknit Property 2)

• Hard manufacturing constraint: extracted 
course rows must “join up” as they come 
around

• Allows one to trace the knit graph and 
come up with a “self-supporting” yarn path

• Loops need to be supported by existing loops

• Note: the actual yarn path does helix, but it is hard to achieve 
“right” amount of helicing in the knit graph generation

• Such constraints are difficult to handle in existing pipelines for 
quad-dominant meshing and/or stripe texturing

Image: Autoknit, Narayanan et al. 

https://textiles-lab.github.io/publications/2018-autoknit/


Foliations & Stripes-Based Approaches

• A line of works first-authored by my 
PhD student Rahul Mitra, and done in 
collaboration with many others

Emily Whiting

Matteo Couplet Liane Makatura Erick Jimenez 

Berumen

Megan Hofmann Kui Wu Emily Whiting

Rahul Mitra

https://rahulmitra.xyz/
http://cs-people.bu.edu/whiting/


Three Main Concepts

1. Spinning Forms for Stripes
2. Global Foliation Structure: 

Orbit Complex
3. Stripe Singularity Placement 

via Curl Quantization



Stripe Textures on Surfaces
• Methods for generating stripe textures use an input vector field to 

guide direction and frequency of stripes, e.g., Stripe Patterns on 
Surfaces by Knöppel et al. 15

A plane example

https://www.cs.cmu.edu/~kmcrane/Projects/StripePatterns/
https://www.cs.cmu.edu/~kmcrane/Projects/StripePatterns/


Stripe Texturing
• Using a unit norm vector field 

achieves evenly-spaced stripes, 
analogous to the goal of evenly-
spaced courses/wales

• Problem: direct application gives 
no simple way to get helix-free 
stripes

• Considered initially by KnitKit
[Nader et al. 2021]; attempted 
remeshing operations to fix helices 
(sans guarantees)

Images: Helix-Free Stripes for Knit Graph Design, Mitra et al. 

for course stripes

for wale stripes

https://gnader.github.io/publications/2021-knitkit.html
https://rahulmitra.xyz/projects/helix_free_stripes/
https://rahulmitra.xyz/projects/helix_free_stripes/
https://rahulmitra.xyz/projects/helix_free_stripes/


Helix-Free Stripes for Knit Graph Design

• Published at SIGGRAPH23: used simple linear constraints to 
achieved helix-free stripe patterns

• Global optimization in the space of spinning forms contrasts with 
the iterative front-marching approach of Autoknit

• Allows for simpler user input with linear constraints

https://rahulmitra.xyz/projects/helix_free_stripes/
https://rahulmitra.xyz/projects/helix_free_stripes/
https://rahulmitra.xyz/projects/helix_free_stripes/


Spinning forms
• Stripe patterns are specified via 

texture maps 

• Discretized in [Knöppel et al.] as 
spinning forms, discrete 1-forms     

• denotes the change in       over 
edge 

• (Discrete Differential Geometry 
notes, Keenan Crane)

Red when Pink when
Use piecewise 

linear interpolant 
over most triangles

Over singular 
triangles use novel 

interpolant from 
[Knöppel et al!]

https://www.cs.cmu.edu/~kmcrane/Projects/DDG/
https://www.cs.cmu.edu/~kmcrane/Projects/DDG/


Spinning forms
• In particular,                        has integer 

curl on all faces

• If                              , we call it a stripe 
singularity

• On such faces, there is a birth or 
death of         level sets of 

Piecewise linear 
over most triangles

Novel interpolant 
from [Knöppel et al!]



Three Main Concepts

1. Spinning Forms for Stripes
2. Global Foliation Structure: 

Orbit Complex
3. Stripe Singularity Placement 

via Curl Quantization



Foliations as vector field flows
• A spinning form       can be interpreted 

as a discretized vector field 

• Its integral curves form the leaves of a 
foliation

• Stripes are collections of integral curves
• Courses and wales in eventual knit graph 

are particular integral curves

• Nontrivial topological behavior only at 
faces with stripe singularities 



An aside
• Stripe singularities are 

NOT your typical quad 
mesh singularities

• Not machine-knittable, 
and lead to disagreement 
of course/wales, or 
mismatched direction

• Present in the composition 
rules of Ben’s work

• Akin to the “position” 
singularities of Instant 
Meshes

Index +1/4, valence 3 Index -1/4, valence 5

Top right image credit: Quad Mesh Generation and Processing, Bommes et al. 2017Bottom image credit: Instant Meshes, Jakob et al. 2015

https://github.com/wjakob/instant-meshes
https://github.com/wjakob/instant-meshes


Local stripe singularity structure

• Stripe singularities are pairs of index +/-1 
(red/yellow) singularities of a vector field

• (Index refers to the number of times the vector 
field rotates about a singularity)

• Separatrices are integral curves that start 
or end at saddle points (yellow 
singularities) 

• They partition into cells of the orbit 
complex, a global descriptor of the 
foliation topology



Orbit complex cell types

• Flow on all cells is topologically 
equivalent to:

• A periodic flow on a cylinder
• Or a horizontal flow on an 

infinite strip

(flow slows down infinitely 

at singularities)



Simple orbit complex example

• Note: the integral curves in Cell A helix, while those in Cell B do not
• Simple linear path integral constraints (orange above) align 

separatrices and prevent helicing of any level set

Annular cell

Annular cell

Annular cell

Annular cell

∞ stripCells A & B are both

∞ strip cells



A slightly more complex example

• Further details can be found in 
our SIGGRAPH24 work: 
Singular Foliations for Knit 
Graph Design

• Mathematical concept of orbit 
complex in reference: 
“Introduction to the Qualitative 
Theory of Dynamical Systems 
on Surfaces” [Aranson et al. 96]

https://rahulmitra.xyz/projects/knitting_foliations/
https://rahulmitra.xyz/projects/knitting_foliations/


Exact helicing => Tracing-free pipeline?

• Closer control of foliation structure opens door to a tracing-free
pipeline

• Capable of representing a broader range of yarn paths than the knit 
graphs of Autoknit



Three Main Concepts

1. Spinning Forms for Stripes
2. Global Foliation Structure: 

Orbit Complex
3. Stripe Singularity Placement 

via Curl Quantization



But where do we place singularities? 
• We look at the problem as one of curl quantization

• To be presented at SIGGRAPH25: Curl Quantization for Automatic 
Placement of Knit Singularities

https://rahulmitra.xyz/projects/curl_quantization/
https://rahulmitra.xyz/projects/curl_quantization/


Curl quantization problem

• We discretize the following continuous optimization problem:

• (technically ill-posed, in the same way that Trivial Connections
[Crane et al. 2010] is)

vector field 
discretized by 

curl quantization sites
(stripe singularities)

normalized time function gradient

https://www.cs.cmu.edu/~kmcrane/Projects/TrivialConnections/


Intuitive sphere example 

• Curl analogous to use of 
Gaussian curvature for 
quad mesh singularities

• Gives a heuristic to place 
stripe singularities

• Note curvature same at 
increase and decrease 
placements here



Bent cylinder example 

• The curl of a vector field 
measures how locally non-
integrable it is. 

• When is 
particularly high, it 
indicates a large variation in 
spacing of time function 
isolines.

• Insertion of a singularity 
allows for evenly-spaced 
stripes on either side.



An iterative strategy

• Our solve strategy greedily places singularities at locations of high 
curl, accounting for prior placements in each step



More intuitive user controls

• Modification of the curl signal 
allows for more natural 
“apparent seam” placement, 
region masking, and other user 
constraints.



More intuitive user controls

• Modification of the curl signal 
allows for more natural 
“apparent seam” placement, 
region masking, and other user 
constraints.

• Prior work required specific 
face-by-face specification of 
singularity locations.



An even greater generalization?

Maybe allow yet another variable: the guiding vector field 

Bad underlying 
guidance direction 



Knitting Levels of Abstraction

Fabric Stitch Yarn
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Non-Manifold Knits

Kim et al. 2022Albaugh et al. 2019

https://dl.acm.org/doi/fullHtml/10.1145/3491102.3502142
https://dl.acm.org/doi/10.1145/3290607.3311767
https://dl.acm.org/doi/10.1145/3290607.3311767
https://dl.acm.org/doi/10.1145/3290607.3311767
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Non-Manifold Knits



93

Non-Manifold Knits



Knitting Machine Constraints

Front Bed Needles

Back Bed Needles

Carriers

94
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James 
McCann

Jonathan
Ragan-Kelley

Yuka 
Ikarashi

Vidya 
Narayanan

Gilbert 
Bernstein

Nat Hurtig
Adriana 
Schulz

Tom Price

Topological Semantics for Knitting



Important Material Properties

96

Front Knit

Back Knit

Rib stitch
Alternating columns of 

front and back knits

Stockinette stitch
Only front knits

Seed stitch
A checkerboard of front 

and back knits

High-level material 

properties 

depend on low-level 

stitch topology



Knit Transformations

Elastic: we can stretch and squash knitting

≅ ≇
Some deformations are 

valid, but others are 

destructive

97



Knot Theory [Thompson, 1869]

Study of loops embedded in    ℝ3

98

≅

Problem: Loops have no loose ends

≇

Two knots are equivalent under 

ambient isotopy



Topological Mappings and 

“Deformation”

Homeomorphic: given objects A and 

B, there’s a continuous, invertible 

mapping between them

99

Ambient Isotopic: objects A and B are 

embedded in ambient space NA and NB. 

There’s a sequence of homeomorphisms 

from NA to NB that takes A to B

⟷

⟷ ≅

≇



Tangles [Conway, 1970]

Take a portion of a knot, and embed it in a ball instead

100



Equivalence on Tangles

Order of endpoints on boundary 

must match!

101

Problem: Tangles are both over and under constrained

≇

Fine to deform 

embedding space

≅



Fenced Tangles 
SIGGRAPH ‘23

Embed additional “fences” that constrain a portion of the tangle

102



Horizontal Composition

103

Can present every tangle as a 
rectangle with an “input” (bottom) 
and “output” (top) ≅

𝐾1 ⊗𝐾2 𝐾3 ⊗𝐾1
Horizontal composition always makes a fenced tangle



Vertical Composition

104

𝐾1 ∘ 𝐾2

Vertical composition requires compatible boundaries

𝐾2 ∘ 𝐾1
𝐾1 ∘ 𝐾3 𝐾3 ∘ 𝐾2



A Formal Semantics for 

Machine Knitting Programs

105

Computing

Math

Rewrites

Formal Knitout

“Meaning”

Fenced Tangle



Knitting Programs are Hard to Read

106



A Small Knitout Program

107



A Small Knitout Program
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A Small Knitout Program
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A Small Knitout Program
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A Small Knitout Program
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A Small Knitout Program

112



State Dependence of Machine 

Knitting

113

𝗄𝗇𝗂𝗍 + 𝖻𝑥 𝑦𝑎𝑟𝑛 𝑏𝑥𝑓𝑥𝑐𝑥 𝑐(𝑥 + 1)

Most knitting machine operations are very local, so there’s only small 

amount of “interesting” topology…



State Dependence of Machine 

Knitting

114

𝑏𝑥𝑓𝑥𝑐𝑥 𝑐(𝑥 + 1)

…but all the “uninteresting” topology is also important to our semantics!

𝗄𝗇𝗂𝗍 + 𝖻𝑥 𝑦𝑎𝑟𝑛



State Dependence of Machine 

Knitting

115

𝗍𝗎𝖼𝗄 + 𝖻1 𝑦
“Needle 𝖻1 performs the 𝗍𝗎𝖼𝗄

operation while the carrier 𝑦 is moving 

in the + direction”

Different 

machine states

Different 

yarn topology

(McCann et al. 2016)



116

All carriers used have 

to start in the correct 

location relative to 

the needle used

There has to be at 

least one loop on the 

needle to knit 

through

All carriers will stop in a 

fixed location relative to 

the needle used

The new number of 

loops on the needle will 

be the number of 

carriers used

Type relation is an 

abstract execution of a 

program on an initial 

state

Formal Knitout Validity



Formal Knitout Semantics

Templated diagrams define the class of fenced tangles a 

knitout operation can make

117

𝗄𝗇𝗂𝗍 + 𝖿. 𝑥 𝑙 𝑦𝑎𝑟𝑛𝑠

𝑖𝑑𝑚 ⊗ ⊗ 𝑖𝑑𝑛
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If two program traces 

are valid and have an 

intermediate state

The concatenated 

program is also valid



Formal Knitout Semantics

119

𝑆0 = ([𝖿. 1 ↦ 1][𝖻. 2 ↦ 1], [𝗒𝖺𝗋𝗇 ↦ 𝖼. 3])

𝑆1 = ([𝖿. 1 ↦ 1][𝖿. 2 ↦ 1], [𝗒𝖺𝗋𝗇 ↦ 𝖼. 3])

𝑆2 = ([𝖿. 1 ↦ 1][𝖿. 2 ↦ 1], [𝗒𝖺𝗋𝗇 ↦ 𝖼. 2])

↑ 𝗑𝖿𝖾𝗋 𝖻. 2 𝖿. 2

↑ 𝗄𝗇𝗂𝗍 − 𝖿. 2 𝗒𝖺𝗋𝗇



Formal Knitout Semantics

120

𝑆0 = ([𝖿. 1 ↦ 1][𝖻. 2 ↦ 1], [𝗒𝖺𝗋𝗇 ↦ 𝖼. 3])

𝑆1 = ([𝖿. 1 ↦ 1][𝖿. 2 ↦ 1], [𝗒𝖺𝗋𝗇 ↦ 𝖼. 3])

𝑆2 = ([𝖿. 1 ↦ 1][𝖿. 2 ↦ 1], [𝗒𝖺𝗋𝗇 ↦ 𝖼. 2])

↑ 𝗑𝖿𝖾𝗋 𝖻. 2 𝖿. 2

↑ 𝗄𝗇𝗂𝗍 − 𝖿. 2 𝗒𝖺𝗋𝗇

Program concatenation maps to fenced tangle vertical composition



Rewrite Rules

121

We can prove general lemmas about 

fenced tangle equivalence
These lemmas can than be used to 

validate program rewrites

(𝐾1 ⊗ 𝑖𝑑) ∘ (𝑖𝑑 ⊗ 𝐾2) (𝑖𝑑 ⊗ 𝐾2) ∘ (𝐾1 ⊗ 𝑖𝑑)



Improve Fabrication Time

122

Novice

Expert



Program Optimizations

123

90 needles120 needles

rewrite!



A Formal Semantics for 

Machine Knitting Programs

124

Rewrites

Formal Knitout

“Meaning”

Fenced Tangle

• First denotational semantics that 

applies to all machine knitting 

programs

• Provably correct rewrite rules 

enable general program 

optimizations



Compilation Process

Formal Knitout

Rewrites

Result!

Compile

Instruction Graph



Instruction Graphs 
SIGGRAPH Asia ‘24

126

Means

• Nodes are oriented boxes with 

input and output faces

• Two types of directed edges: 

arcs map to single paths and 

ribbons map to parallel bundles

• Embedding of graph in 3D 

space is important!



Knitting Semantics

Fenced Tangle

Formal Knitout

127

Machine 

Knittable

Computing

Math

Instruction 

Graphs

“Meaning”

Instruction 

Graphable

Instruction 

Graphs



Formal Knitout to Instruction Graphs

Fenced Tangle

Formal Knitout
Instruction 

Graphs

128

Machine 

Knittable

tuck + f.0 3.0 (2,1)
knit + f.1 3.0 (2,1)
xfer f.0 b.0
miss - f.1 2
knit - b.0 3.0 (2,1)

Computing

Math

Every valid machine knitting 

program has an equivalent 

Instruction Graph

𝜙

“Meaning”



Lifting Formal Knitout to Instruction Graphs

129



Instruction Graphs to Formal Knitout

Fenced Tangle

Formal Knitout
Instruction 

Graphs

130

Machine 

Knittable ???

tuck + f.0 3.0 (2,1)
knit + f.1 3.0 (2,1)
xfer f.0 b.0
miss - f.1 2
knit - b.0 3.0 (2,1)

Computing

Math

???



Instruction Graphs to Formal Knitout

Fenced Tangle

Formal Knitout

UFO

Instruction 

Graphs

131

Machine 

Knittable

tuck + f.0 3.0 (2,1)
knit + f.1 3.0 (2,1)
xfer f.0 b.0
miss - f.1 2
knit - b.0 3.0 (2,1)

Computing

Math

Every UFO Instruction 

Graph has an equivalent 

formal knitout program

ℒ



What is Machine Knitable?

132

Upward
• All arcs and ribbons only move up

• Each node is pointing up

Knitting machine 

operations are performed 

sequentially



What is Machine Knitable?

133

Forward
• We only see the front or back of nodes

• We only see the front or back of ribbons

Knitting machines cannot 

rotate loops



What is Machine Knitable?
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Ordered 
• Carrier ids are unique along the vertical axis

A carrier cannot be in 

two places at the same 

time



What is Machine Knitable?

135

Ordered 
• If two arcs cross each other, the smaller carrier id goes in front

Carriers run on fixed rails 

and cannot twist around 

each other



Lowering UFO IG to knitout

𝐺4

𝐺5

𝐺6

𝐺7

Single event partitions

ℒ

xfer f.2 b.2
xfer f.1 b.1
rack -1 
xfer b.2 f.1
rack 0
rack 1
xfer f.1 b.1
rack 0

xfer f.1 b.1
rack -1 
xfer b.1 f.0
rack 0
xfer f.2 b.2
rack -1
xfer b.2 f.1
rack 0

xfer f.0 b.0
knit - b.0 1 (2,1) 
xfer b.0 f.0

miss - f.1 2

ℒ(𝐺4) ℒ(𝐺5)

ℒ(𝐺6) ℒ(𝐺7)

Per-event compilation

ℰ𝐺[𝐺] ≅ ℰ𝐾[ℒ(𝐺)]Per-event compilation preserves topological equivalence

𝐺1 ∘ 𝐺2 → ℒ(𝐺1); ℒ(𝐺2)Instruction graph composition implies knitout composition



Compilation Pipeline

Intermediate 

representation that 

precisely describes knit 

topology

Instruction 

Graph



Compilation Pipeline

Upward, Forward, Ordered 

presentation guarantees a 

topologically equivalent 

program exists

Ambient 

Isotopy

Instruction 

Graph

UFO Instruction 

Graphs



Compilation Pipeline
Lowering function always 

produces topologically 

equivalent program

Ambient 

Isotopy

Instruction 

Graph

ℒ

Machine 

Instructions

UFO Instruction 

Graphs

Result!



What isn’t Machine Knitable?
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Never Upward Never Ordered?Never Forward

???



Alternative Program Semantics
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Lin and McCann ICRA ’21Lin, Narayanan, Ikarashi, Ragan-Kelly, 

Bernstein, McCann SIGGRAPH ’23

Lin, Narayanan, McCann SCF ’18

Fenced Tangles

All of knitting, but 

computationally hard

Artin BraidsDiscrete Offsets

Some of knitting, but computationally tractable

Can we find something fast and complete?

Monoidal Category

Hurtig, Lin, Price, Schulz, 

McCann, Bernstein ICFP '25



Compilation from Instruction Graphs to 

Formal Knitout

Fenced Tangle

Formal Knitout

“Meaning”

UFO Instruction 

Graphs

142

Machine 

Knittable

tuck + f.0 3.0 (2,1)
knit + f.1 3.0 (2,1)
xfer f.0 b.0
miss - f.1 2
knit - b.0 3.0 (2,1)

• Instructions graphs are an 

intermediate representation 

with a compatible semantics 

with knitout

• UFO definition of machine 

knittability lays the groundwork 

for automatic compilation on all 

of machine knitting



Knitting Levels of Abstraction

Fabric Stitch Yarn



The Fabrication Workflow
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Design

Specifications
High-level

ProgramsDesigner Programmer
Compiler

Low-level

Instructions
Machine

Simulation

Object Scanning



Thin-Sheet Simulation
Sperl, et al. 2020

Fast but simplified

Detailed but slow

Kaldor, et al. 2008

Interesting Future Work & Open Problems

145

Yarn-Level Simulation

Stitch-Level Simulation

Wu, et al. 2025

https://dl.acm.org/doi/10.1145/3386569.3392412
https://dl.acm.org/doi/10.1145/1360612.1360664
https://kuiwuchn.github.io/rtstitch.html
https://kuiwuchn.github.io/rtstitch.html
https://kuiwuchn.github.io/rtstitch.html


Interesting Future Work & Open Problems

Existing knit capture pipelines are very constrained

Kaspar, et al. 2019

Wu, et al. 2019

Sperl, et al. 2022

http://proceedings.mlr.press/v97/kaspar19a.html
http://proceedings.mlr.press/v97/kaspar19a.html
http://proceedings.mlr.press/v97/kaspar19a.html
https://dl.acm.org/doi/10.1145/3528223.3530167
https://dl.acm.org/doi/10.1145/3528223.3530167
https://dl.acm.org/doi/10.1145/3528223.3530167


Interesting Future Work & Open Problems

How do we account for elasticity in the design process?
Edelstein, et al. 2022

Liu, et al. 2021



Interesting Future Work & Open Problems

Combine high-level quad layout, and low-level singularity placement perspectives



Interesting Future Work & Open Problems

Transfer design criteria and fabrication constraints between different levels of abstraction



Interesting Future Work & Open Problems

General computational tools for all of knitting

Zhu, et al. 2024Twigg-Smith, et al. 2024
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Thanks & Questions!

Fabric Stitch Yarn
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