
Computational Knitting

Jenny Lin

Assistant Professor

Ben Jones

Postdoctoral Associate

Edward Chien

Assistant Professor

Organization

• Knitting Background
• What is Knitting and Why is it Important?
• Why is Knitting Geometry?

• Computational Knitting Representations and Algorithms
• Fabric Level
• Stitch Level
• Yarn Level

• Open Problems in Computational Knitting

Aardman Animations

4

Sources: Nike, Gymshark, Peregrine Clothing, Museum Outlets, Alexandre Kaspar

https://blog.jdsports.com/what-is-flyknit-technology/
https://www.gymshark.com/products/gymshark-warp-knit-leggings-black-aw22
https://robbreport.com/style/fashion/gallery/best-knit-t-shirts-men-2949309/doppiaa-knitted-tshirt-via-the-rake-copy/
https://museumoutlets.com/great-baby-gifts/rainbow-socks-for-kiddos#gsc.tab=0
https://docs.google.com/presentation/d/19DEjd1yx_-BvO5CkneRb-noTLzZ4-SZd-EuX_4vQi-M/edit?usp=sharing

Sources: Nike, Gymshark, Peregrine Clothing, Museum Outlets, Alexandre Kaspar

https://blog.jdsports.com/what-is-flyknit-technology/
https://www.gymshark.com/products/gymshark-warp-knit-leggings-black-aw22
https://robbreport.com/style/fashion/gallery/best-knit-t-shirts-men-2949309/doppiaa-knitted-tshirt-via-the-rake-copy/
https://museumoutlets.com/great-baby-gifts/rainbow-socks-for-kiddos#gsc.tab=0
https://docs.google.com/presentation/d/19DEjd1yx_-BvO5CkneRb-noTLzZ4-SZd-EuX_4vQi-M/edit?usp=sharing

Technical Knitting Applications

Luo et al. 2022

Wicaksono et al. 2023

Kim et al. 2022

Liu et al. 2022

7

Saint-Gobain Aerospace

Zaha Hadid

Hand Knitting

Images: Buzzfeed

https://www.buzzfeed.com/alannaokun/the-ultimate-guide-to-knitting

Knitting (The Process)

9

Active Loops: would

unravel without needles

holding them

Incoming yarn: pulled

through active loops to

make new loops

In progress fabric:

stable loops that

won’t unravel

1

0

Tekstil Sayfasi

Active Loops

In progress fabric

Incoming yarn

1

1

Tekstil Sayfasi

Whole garment Knitting

• “Whole garment” machines are akin to 3D printing a garment
• Machine knitting is much faster and more precise

• (though less versatile than hand knitting)
Video: Shima Seiki

https://youtu.be/kZE8rvPYbII?si=qbH8emD7IjW_FwdD

Sheets & Cylinders

• Two basic topological structures that can be joined to make almost
any surface: sheets and cylinders

Video: Shima Seiki, NHK

https://youtu.be/kZE8rvPYbII?si=qbH8emD7IjW_FwdD
https://youtu.be/y6wHl0Xtxfw?si=okRXcvu_edulcFxJ

?

Curvature in Knitting

Short Row

Increase

Decrease

Shaping

Short Row

Why is Knitting Computer Graphics?

17

Organization

• Knitting Background
• What is Knitting and Why is it Important?
• Why is Knitting Geometry?

• Computational Knitting Representations and Algorithms
• Fabric Level
• Stitch Level
• Yarn Level

• Open Problems in Computational Knitting

Knitting Levels of Detail

Fabric Stitch Yarn

Knitting Levels of Abstraction

Fabric Stitch Yarn

Knitting Levels of Abstraction

Fabric Stitch Yarn

Knitting Levels of Abstraction

Fabric Stitch Yarn

Knitting Levels of Abstraction

Fabric Stitch Yarn

A Brief History of Knit

Representations

Knitting Levels of Abstraction

Fabric Stitch Yarn

Thin-Sheet Simulation
Sperl, et al. 2020

Fast but simplifiedDetailed but slow

Kaldor, et al. 2008

Yarn-Level Simulation

Knitting Levels of Abstraction

Fabric Stitch Yarn

Stitch-Level Abstractions: Meshes

Yuksel et al 2012

Stitch-Level Abstraction: Graphs

Nayaranan et al 2018

Visual Stitch-Level Programming

Wu et al 2019 (SIGGRAPH)Narayanan et al 2019 (SIGGRAPH)

Knitting Levels of Abstraction

Fabric Stitch Yarn

Stitches Aren’t the Whole Story

Image: HAHA MAMA Clothing

Stitches Aren’t the Whole Story

Image: HAHA MAMA Clothing

9

16

Computation Design of Knit Templates (Siggraph 2022)

Knitting is Customizable

34Image: Kim Scarborough

Knitting is Discrete

35

Stitch

36

Knit Design Axes

ShapingTexture Composition Shape Variation

37

Knit Templates

High-Level

Specifications

Automatic

Generation

38

Overview

Data Structure Design Tool

39

Coarse Knit Meshes

Why Patches?Why Quads?

40

Insight I: Why Patches?

[Narayanan et al. 2018, 2019][Our Work]

High-Level Constraints Low-Level Constraints

Proof

41

Insight II: Why Quads?

Sheets

Tubes

Composition

-1/2 (x2)

-1/4 (x4)

42

Composition Rules

Images: emmajane

43

Composition Rules

Splitting / Merging Closing Opening Patch

44

A Note About Singularities

Lyon et al 2021

Fabric Level Stitch Level

45

Overview

Data Structure Design Tool

46

Design Tool Overview

Input Instance

Patch Design Patch Labeling

Consistency Correctness

47

Patch Design

Correspondence

Joint MIQ

48

Design Tool Overview

Input Instance

Patch Design Patch Labeling

Consistency Correctness

49

Patch Labeling

50

Patch Labels

Knit Direction

Seams

Allowed Shaping

Texture

Shaping Distribution

51

52

Results

53

Composition Rules

No Rules Composition Rules
x2 x4 x4

54

Shape Variation

55

Future: Better Tesselations, Bigger Patches

Knitting Levels of Abstraction

Fabric Stitch Yarn

Stitch-level abstraction

• Characterized by knit graphs or quad-dominant stitch meshes
• Nodes correspond to individual stitches (roughly)

• Aim is to achieve consistent element size and geometric fidelity

Images: Curl Quantization for Automatic Placement of Knit Singularities, Mitra et al.

https://rahulmitra.xyz/projects/curl_quantization/

Stitch-level abstraction

• Non-quad elements arise to denote shaping operations

Shaping via stitch irregularities/singularities

• Knit graph of Autoknit has a
node for every pair of
stacked stitches, and edges
of course and wale type

• Singularities correspond to
non-quad faces in the mesh

• Increase
• Decrease
• Short Row Ends

Short row shaping example

“Whole-garment” setting

• Aim is a knit structure that is fully machine-knittable
• Any seams or holes that need to be sewn together in post-

processing have had their positions fixed

Hole to be sewn

Holes to be sewn

Images: Curl Quantization for Automatic Placement of Knit Singularities, Mitra et al.

https://rahulmitra.xyz/projects/curl_quantization/

Knitting time function

• The time function
encodes general knitting direction and
dependency between course rows

• Level sets correspond roughly to
desired course rows

• Approximate wale direction given by
the gradient

• User input or harmonic interpolation

Image: Autoknit, Narayanan et al.

https://textiles-lab.github.io/publications/2018-autoknit/

Helix-free constraint (Autoknit Property 2)

• Hard manufacturing constraint: extracted
course rows must “join up” as they come
around

• Allows one to trace the knit graph and
come up with a “self-supporting” yarn path

• Loops need to be supported by existing loops

• Note: the actual yarn path does helix, but it is hard to achieve
“right” amount of helicing in the knit graph generation

• Such constraints are difficult to handle in existing pipelines for
quad-dominant meshing and/or stripe texturing

Image: Autoknit, Narayanan et al.

https://textiles-lab.github.io/publications/2018-autoknit/

Foliations & Stripes-Based Approaches

• A line of works first-authored by my
PhD student Rahul Mitra, and done in
collaboration with many others

Emily Whiting

Matteo Couplet Liane Makatura Erick Jimenez

Berumen

Megan Hofmann Kui Wu Emily Whiting

Rahul Mitra

https://rahulmitra.xyz/
http://cs-people.bu.edu/whiting/

Three Main Concepts

1. Spinning Forms for Stripes
2. Global Foliation Structure:

Orbit Complex
3. Stripe Singularity Placement

via Curl Quantization

Stripe Textures on Surfaces
• Methods for generating stripe textures use an input vector field to

guide direction and frequency of stripes, e.g., Stripe Patterns on
Surfaces by Knöppel et al. 15

A plane example

https://www.cs.cmu.edu/~kmcrane/Projects/StripePatterns/
https://www.cs.cmu.edu/~kmcrane/Projects/StripePatterns/

Stripe Texturing
• Using a unit norm vector field

achieves evenly-spaced stripes,
analogous to the goal of evenly-
spaced courses/wales

• Problem: direct application gives
no simple way to get helix-free
stripes

• Considered initially by KnitKit
[Nader et al. 2021]; attempted
remeshing operations to fix helices
(sans guarantees)

Images: Helix-Free Stripes for Knit Graph Design, Mitra et al.

for course stripes

for wale stripes

https://gnader.github.io/publications/2021-knitkit.html
https://rahulmitra.xyz/projects/helix_free_stripes/
https://rahulmitra.xyz/projects/helix_free_stripes/
https://rahulmitra.xyz/projects/helix_free_stripes/

Helix-Free Stripes for Knit Graph Design

• Published at SIGGRAPH23: used simple linear constraints to
achieved helix-free stripe patterns

• Global optimization in the space of spinning forms contrasts with
the iterative front-marching approach of Autoknit

• Allows for simpler user input with linear constraints

https://rahulmitra.xyz/projects/helix_free_stripes/
https://rahulmitra.xyz/projects/helix_free_stripes/
https://rahulmitra.xyz/projects/helix_free_stripes/

Spinning forms
• Stripe patterns are specified via

texture maps

• Discretized in [Knöppel et al.] as
spinning forms, discrete 1-forms

• denotes the change in over
edge

• (Discrete Differential Geometry
notes, Keenan Crane)

Red when Pink when
Use piecewise

linear interpolant
over most triangles

Over singular
triangles use novel

interpolant from
[Knöppel et al!]

https://www.cs.cmu.edu/~kmcrane/Projects/DDG/
https://www.cs.cmu.edu/~kmcrane/Projects/DDG/

Spinning forms
• In particular, has integer

curl on all faces

• If , we call it a stripe
singularity

• On such faces, there is a birth or
death of level sets of

Piecewise linear
over most triangles

Novel interpolant
from [Knöppel et al!]

Three Main Concepts

1. Spinning Forms for Stripes
2. Global Foliation Structure:

Orbit Complex
3. Stripe Singularity Placement

via Curl Quantization

Foliations as vector field flows
• A spinning form can be interpreted

as a discretized vector field

• Its integral curves form the leaves of a
foliation

• Stripes are collections of integral curves
• Courses and wales in eventual knit graph

are particular integral curves

• Nontrivial topological behavior only at
faces with stripe singularities

An aside
• Stripe singularities are

NOT your typical quad
mesh singularities

• Not machine-knittable,
and lead to disagreement
of course/wales, or
mismatched direction

• Present in the composition
rules of Ben’s work

• Akin to the “position”
singularities of Instant
Meshes

Index +1/4, valence 3 Index -1/4, valence 5

Top right image credit: Quad Mesh Generation and Processing, Bommes et al. 2017Bottom image credit: Instant Meshes, Jakob et al. 2015

https://github.com/wjakob/instant-meshes
https://github.com/wjakob/instant-meshes

Local stripe singularity structure

• Stripe singularities are pairs of index +/-1
(red/yellow) singularities of a vector field

• (Index refers to the number of times the vector
field rotates about a singularity)

• Separatrices are integral curves that start
or end at saddle points (yellow
singularities)

• They partition into cells of the orbit
complex, a global descriptor of the
foliation topology

Orbit complex cell types

• Flow on all cells is topologically
equivalent to:

• A periodic flow on a cylinder
• Or a horizontal flow on an

infinite strip

(flow slows down infinitely

at singularities)

Simple orbit complex example

• Note: the integral curves in Cell A helix, while those in Cell B do not
• Simple linear path integral constraints (orange above) align

separatrices and prevent helicing of any level set

Annular cell

Annular cell

Annular cell

Annular cell

∞ stripCells A & B are both

∞ strip cells

A slightly more complex example

• Further details can be found in
our SIGGRAPH24 work:
Singular Foliations for Knit
Graph Design

• Mathematical concept of orbit
complex in reference:
“Introduction to the Qualitative
Theory of Dynamical Systems
on Surfaces” [Aranson et al. 96]

https://rahulmitra.xyz/projects/knitting_foliations/
https://rahulmitra.xyz/projects/knitting_foliations/

Exact helicing => Tracing-free pipeline?

• Closer control of foliation structure opens door to a tracing-free
pipeline

• Capable of representing a broader range of yarn paths than the knit
graphs of Autoknit

Three Main Concepts

1. Spinning Forms for Stripes
2. Global Foliation Structure:

Orbit Complex
3. Stripe Singularity Placement

via Curl Quantization

But where do we place singularities?
• We look at the problem as one of curl quantization

• To be presented at SIGGRAPH25: Curl Quantization for Automatic
Placement of Knit Singularities

https://rahulmitra.xyz/projects/curl_quantization/
https://rahulmitra.xyz/projects/curl_quantization/

Curl quantization problem

• We discretize the following continuous optimization problem:

• (technically ill-posed, in the same way that Trivial Connections
[Crane et al. 2010] is)

vector field
discretized by

curl quantization sites
(stripe singularities)

normalized time function gradient

https://www.cs.cmu.edu/~kmcrane/Projects/TrivialConnections/

Intuitive sphere example

• Curl analogous to use of
Gaussian curvature for
quad mesh singularities

• Gives a heuristic to place
stripe singularities

• Note curvature same at
increase and decrease
placements here

Bent cylinder example

• The curl of a vector field
measures how locally non-
integrable it is.

• When is
particularly high, it
indicates a large variation in
spacing of time function
isolines.

• Insertion of a singularity
allows for evenly-spaced
stripes on either side.

An iterative strategy

• Our solve strategy greedily places singularities at locations of high
curl, accounting for prior placements in each step

More intuitive user controls

• Modification of the curl signal
allows for more natural
“apparent seam” placement,
region masking, and other user
constraints.

More intuitive user controls

• Modification of the curl signal
allows for more natural
“apparent seam” placement,
region masking, and other user
constraints.

• Prior work required specific
face-by-face specification of
singularity locations.

An even greater generalization?

Maybe allow yet another variable: the guiding vector field

Bad underlying
guidance direction

Knitting Levels of Abstraction

Fabric Stitch Yarn

91

Non-Manifold Knits

Kim et al. 2022Albaugh et al. 2019

https://dl.acm.org/doi/fullHtml/10.1145/3491102.3502142
https://dl.acm.org/doi/10.1145/3290607.3311767
https://dl.acm.org/doi/10.1145/3290607.3311767
https://dl.acm.org/doi/10.1145/3290607.3311767

92

Non-Manifold Knits

93

Non-Manifold Knits

Knitting Machine Constraints

Front Bed Needles

Back Bed Needles

Carriers

94

95

James
McCann

Jonathan
Ragan-Kelley

Yuka
Ikarashi

Vidya
Narayanan

Gilbert
Bernstein

Nat Hurtig
Adriana
Schulz

Tom Price

Topological Semantics for Knitting

Important Material Properties

96

Front Knit

Back Knit

Rib stitch
Alternating columns of

front and back knits

Stockinette stitch
Only front knits

Seed stitch
A checkerboard of front

and back knits

High-level material

properties

depend on low-level

stitch topology

Knit Transformations

Elastic: we can stretch and squash knitting

≅ ≇
Some deformations are

valid, but others are

destructive

97

Knot Theory [Thompson, 1869]

Study of loops embedded in ℝ3

98

≅

Problem: Loops have no loose ends

≇

Two knots are equivalent under

ambient isotopy

Topological Mappings and

“Deformation”

Homeomorphic: given objects A and

B, there’s a continuous, invertible

mapping between them

99

Ambient Isotopic: objects A and B are

embedded in ambient space NA and NB.

There’s a sequence of homeomorphisms

from NA to NB that takes A to B

⟷

⟷ ≅

≇

Tangles [Conway, 1970]

Take a portion of a knot, and embed it in a ball instead

100

Equivalence on Tangles

Order of endpoints on boundary

must match!

101

Problem: Tangles are both over and under constrained

≇

Fine to deform

embedding space

≅

Fenced Tangles
SIGGRAPH ‘23

Embed additional “fences” that constrain a portion of the tangle

102

Horizontal Composition

103

Can present every tangle as a
rectangle with an “input” (bottom)
and “output” (top) ≅

𝐾1 ⊗𝐾2 𝐾3 ⊗𝐾1
Horizontal composition always makes a fenced tangle

Vertical Composition

104

𝐾1 ∘ 𝐾2

Vertical composition requires compatible boundaries

𝐾2 ∘ 𝐾1
𝐾1 ∘ 𝐾3 𝐾3 ∘ 𝐾2

A Formal Semantics for

Machine Knitting Programs

105

Computing

Math

Rewrites

Formal Knitout

“Meaning”

Fenced Tangle

Knitting Programs are Hard to Read

106

A Small Knitout Program

107

A Small Knitout Program

108

A Small Knitout Program

109

A Small Knitout Program

110

A Small Knitout Program

111

A Small Knitout Program

112

State Dependence of Machine

Knitting

113

𝗄𝗇𝗂𝗍 + 𝖻𝑥 𝑦𝑎𝑟𝑛 𝑏𝑥𝑓𝑥𝑐𝑥 𝑐(𝑥 + 1)

Most knitting machine operations are very local, so there’s only small

amount of “interesting” topology…

State Dependence of Machine

Knitting

114

𝑏𝑥𝑓𝑥𝑐𝑥 𝑐(𝑥 + 1)

…but all the “uninteresting” topology is also important to our semantics!

𝗄𝗇𝗂𝗍 + 𝖻𝑥 𝑦𝑎𝑟𝑛

State Dependence of Machine

Knitting

115

𝗍𝗎𝖼𝗄 + 𝖻1 𝑦
“Needle 𝖻1 performs the 𝗍𝗎𝖼𝗄

operation while the carrier 𝑦 is moving

in the + direction”

Different

machine states

Different

yarn topology

(McCann et al. 2016)

116

All carriers used have

to start in the correct

location relative to

the needle used

There has to be at

least one loop on the

needle to knit

through

All carriers will stop in a

fixed location relative to

the needle used

The new number of

loops on the needle will

be the number of

carriers used

Type relation is an

abstract execution of a

program on an initial

state

Formal Knitout Validity

Formal Knitout Semantics

Templated diagrams define the class of fenced tangles a

knitout operation can make

117

𝗄𝗇𝗂𝗍 + 𝖿. 𝑥 𝑙 𝑦𝑎𝑟𝑛𝑠

𝑖𝑑𝑚 ⊗ ⊗ 𝑖𝑑𝑛

118

If two program traces

are valid and have an

intermediate state

The concatenated

program is also valid

Formal Knitout Semantics

119

𝑆0 = ([𝖿. 1 ↦ 1][𝖻. 2 ↦ 1], [𝗒𝖺𝗋𝗇 ↦ 𝖼. 3])

𝑆1 = ([𝖿. 1 ↦ 1][𝖿. 2 ↦ 1], [𝗒𝖺𝗋𝗇 ↦ 𝖼. 3])

𝑆2 = ([𝖿. 1 ↦ 1][𝖿. 2 ↦ 1], [𝗒𝖺𝗋𝗇 ↦ 𝖼. 2])

↑ 𝗑𝖿𝖾𝗋 𝖻. 2 𝖿. 2

↑ 𝗄𝗇𝗂𝗍 − 𝖿. 2 𝗒𝖺𝗋𝗇

Formal Knitout Semantics

120

𝑆0 = ([𝖿. 1 ↦ 1][𝖻. 2 ↦ 1], [𝗒𝖺𝗋𝗇 ↦ 𝖼. 3])

𝑆1 = ([𝖿. 1 ↦ 1][𝖿. 2 ↦ 1], [𝗒𝖺𝗋𝗇 ↦ 𝖼. 3])

𝑆2 = ([𝖿. 1 ↦ 1][𝖿. 2 ↦ 1], [𝗒𝖺𝗋𝗇 ↦ 𝖼. 2])

↑ 𝗑𝖿𝖾𝗋 𝖻. 2 𝖿. 2

↑ 𝗄𝗇𝗂𝗍 − 𝖿. 2 𝗒𝖺𝗋𝗇

Program concatenation maps to fenced tangle vertical composition

Rewrite Rules

121

We can prove general lemmas about

fenced tangle equivalence
These lemmas can than be used to

validate program rewrites

(𝐾1 ⊗ 𝑖𝑑) ∘ (𝑖𝑑 ⊗ 𝐾2) (𝑖𝑑 ⊗ 𝐾2) ∘ (𝐾1 ⊗ 𝑖𝑑)

Improve Fabrication Time

122

Novice

Expert

Program Optimizations

123

90 needles120 needles

rewrite!

A Formal Semantics for

Machine Knitting Programs

124

Rewrites

Formal Knitout

“Meaning”

Fenced Tangle

• First denotational semantics that

applies to all machine knitting

programs

• Provably correct rewrite rules

enable general program

optimizations

Compilation Process

Formal Knitout

Rewrites

Result!

Compile

Instruction Graph

Instruction Graphs
SIGGRAPH Asia ‘24

126

Means

• Nodes are oriented boxes with

input and output faces

• Two types of directed edges:

arcs map to single paths and

ribbons map to parallel bundles

• Embedding of graph in 3D

space is important!

Knitting Semantics

Fenced Tangle

Formal Knitout

127

Machine

Knittable

Computing

Math

Instruction

Graphs

“Meaning”

Instruction

Graphable

Instruction

Graphs

Formal Knitout to Instruction Graphs

Fenced Tangle

Formal Knitout
Instruction

Graphs

128

Machine

Knittable

tuck + f.0 3.0 (2,1)
knit + f.1 3.0 (2,1)
xfer f.0 b.0
miss - f.1 2
knit - b.0 3.0 (2,1)

Computing

Math

Every valid machine knitting

program has an equivalent

Instruction Graph

𝜙

“Meaning”

Lifting Formal Knitout to Instruction Graphs

129

Instruction Graphs to Formal Knitout

Fenced Tangle

Formal Knitout
Instruction

Graphs

130

Machine

Knittable ???

tuck + f.0 3.0 (2,1)
knit + f.1 3.0 (2,1)
xfer f.0 b.0
miss - f.1 2
knit - b.0 3.0 (2,1)

Computing

Math

???

Instruction Graphs to Formal Knitout

Fenced Tangle

Formal Knitout

UFO

Instruction

Graphs

131

Machine

Knittable

tuck + f.0 3.0 (2,1)
knit + f.1 3.0 (2,1)
xfer f.0 b.0
miss - f.1 2
knit - b.0 3.0 (2,1)

Computing

Math

Every UFO Instruction

Graph has an equivalent

formal knitout program

ℒ

What is Machine Knitable?

132

Upward
• All arcs and ribbons only move up

• Each node is pointing up

Knitting machine

operations are performed

sequentially

What is Machine Knitable?

133

Forward
• We only see the front or back of nodes

• We only see the front or back of ribbons

Knitting machines cannot

rotate loops

What is Machine Knitable?

134

Ordered
• Carrier ids are unique along the vertical axis

A carrier cannot be in

two places at the same

time

What is Machine Knitable?

135

Ordered
• If two arcs cross each other, the smaller carrier id goes in front

Carriers run on fixed rails

and cannot twist around

each other

Lowering UFO IG to knitout

𝐺4

𝐺5

𝐺6

𝐺7

Single event partitions

ℒ

xfer f.2 b.2
xfer f.1 b.1
rack -1
xfer b.2 f.1
rack 0
rack 1
xfer f.1 b.1
rack 0

xfer f.1 b.1
rack -1
xfer b.1 f.0
rack 0
xfer f.2 b.2
rack -1
xfer b.2 f.1
rack 0

xfer f.0 b.0
knit - b.0 1 (2,1)
xfer b.0 f.0

miss - f.1 2

ℒ(𝐺4) ℒ(𝐺5)

ℒ(𝐺6) ℒ(𝐺7)

Per-event compilation

ℰ𝐺[𝐺] ≅ ℰ𝐾[ℒ(𝐺)]Per-event compilation preserves topological equivalence

𝐺1 ∘ 𝐺2 → ℒ(𝐺1); ℒ(𝐺2)Instruction graph composition implies knitout composition

Compilation Pipeline

Intermediate

representation that

precisely describes knit

topology

Instruction

Graph

Compilation Pipeline

Upward, Forward, Ordered

presentation guarantees a

topologically equivalent

program exists

Ambient

Isotopy

Instruction

Graph

UFO Instruction

Graphs

Compilation Pipeline
Lowering function always

produces topologically

equivalent program

Ambient

Isotopy

Instruction

Graph

ℒ

Machine

Instructions

UFO Instruction

Graphs

Result!

What isn’t Machine Knitable?

140

Never Upward Never Ordered?Never Forward

???

Alternative Program Semantics

141

Lin and McCann ICRA ’21Lin, Narayanan, Ikarashi, Ragan-Kelly,

Bernstein, McCann SIGGRAPH ’23

Lin, Narayanan, McCann SCF ’18

Fenced Tangles

All of knitting, but

computationally hard

Artin BraidsDiscrete Offsets

Some of knitting, but computationally tractable

Can we find something fast and complete?

Monoidal Category

Hurtig, Lin, Price, Schulz,

McCann, Bernstein ICFP '25

Compilation from Instruction Graphs to

Formal Knitout

Fenced Tangle

Formal Knitout

“Meaning”

UFO Instruction

Graphs

142

Machine

Knittable

tuck + f.0 3.0 (2,1)
knit + f.1 3.0 (2,1)
xfer f.0 b.0
miss - f.1 2
knit - b.0 3.0 (2,1)

• Instructions graphs are an

intermediate representation

with a compatible semantics

with knitout

• UFO definition of machine

knittability lays the groundwork

for automatic compilation on all

of machine knitting

Knitting Levels of Abstraction

Fabric Stitch Yarn

The Fabrication Workflow

144

Design

Specifications
High-level

ProgramsDesigner Programmer
Compiler

Low-level

Instructions
Machine

Simulation

Object Scanning

Thin-Sheet Simulation
Sperl, et al. 2020

Fast but simplified

Detailed but slow

Kaldor, et al. 2008

Interesting Future Work & Open Problems

145

Yarn-Level Simulation

Stitch-Level Simulation

Wu, et al. 2025

https://dl.acm.org/doi/10.1145/3386569.3392412
https://dl.acm.org/doi/10.1145/1360612.1360664
https://kuiwuchn.github.io/rtstitch.html
https://kuiwuchn.github.io/rtstitch.html
https://kuiwuchn.github.io/rtstitch.html

Interesting Future Work & Open Problems

Existing knit capture pipelines are very constrained

Kaspar, et al. 2019

Wu, et al. 2019

Sperl, et al. 2022

http://proceedings.mlr.press/v97/kaspar19a.html
http://proceedings.mlr.press/v97/kaspar19a.html
http://proceedings.mlr.press/v97/kaspar19a.html
https://dl.acm.org/doi/10.1145/3528223.3530167
https://dl.acm.org/doi/10.1145/3528223.3530167
https://dl.acm.org/doi/10.1145/3528223.3530167

Interesting Future Work & Open Problems

How do we account for elasticity in the design process?
Edelstein, et al. 2022

Liu, et al. 2021

Interesting Future Work & Open Problems

Combine high-level quad layout, and low-level singularity placement perspectives

Interesting Future Work & Open Problems

Transfer design criteria and fabrication constraints between different levels of abstraction

Interesting Future Work & Open Problems

General computational tools for all of knitting

Zhu, et al. 2024Twigg-Smith, et al. 2024

References
• Benjamin Jones, Yuxuan Mei, Haisen Zhao, Taylor Gotfrid, Jennifer Mankoff, and

Adriana Schulz. 2021. Computational Design of Knit Templates. ACM Trans. Graph. 41,
2, Article 16 (April 2022), 16 pages. https://doi.org/10.1145/3488006

• Rahul Mitra, Liane Makatura, Emily Whiting, and Edward Chien. 2023. Helix-Free
Stripes for Knit Graph Design. In ACM SIGGRAPH 2023 Conference Proceedings
(SIGGRAPH '23). Association for Computing Machinery, New York, NY, USA, Article 75,
1–9. https://doi.org/10.1145/3588432.3591564

• Rahul Mitra, Erick Jimenez Berumen, Megan Hofmann, and Edward Chien. 2024.
Singular Foliations for Knit Graph Design. In ACM SIGGRAPH 2024 Conference Papers
(SIGGRAPH '24). Association for Computing Machinery, New York, NY, USA, Article 38,
1–11. https://doi.org/10.1145/3641519.3657487

• Jenny Lin, Vidya Narayanan, Yuka Ikarashi, Jonathan Ragan-Kelley, Gilbert Bernstein,
and James Mccann. 2023. Semantics and Scheduling for Machine Knitting Compilers.
ACM Trans. Graph. 42, 4, Article 143 (August 2023), 26 pages.
https://doi.org/10.1145/3592449

• Jenny Han Lin, Yuka Ikarashi, Gilbert Louis Bernstein, and James McCann. 2024. UFO
Instruction Graphs Are Machine Knittable. ACM Trans. Graph. 43, 6, Article 206
(December 2024), 22 pages. https://doi.org/10.1145/3687948

https://doi.org/10.1145/3488006
https://doi.org/10.1145/3592449

Thanks & Questions!

Fabric Stitch Yarn

	Slide 1: Computational Knitting
	Slide 2: Organization
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7: Technical Knitting Applications
	Slide 8: Hand Knitting
	Slide 9: Knitting (The Process)
	Slide 10
	Slide 11
	Slide 12: Whole garment Knitting
	Slide 13: Sheets & Cylinders
	Slide 14
	Slide 15: Curvature in Knitting
	Slide 16
	Slide 17: Why is Knitting Computer Graphics?
	Slide 18: Organization
	Slide 19: Knitting Levels of Detail
	Slide 20: Knitting Levels of Abstraction
	Slide 21: Knitting Levels of Abstraction
	Slide 22: Knitting Levels of Abstraction
	Slide 23: Knitting Levels of Abstraction
	Slide 24: A Brief History of Knit Representations
	Slide 25: Knitting Levels of Abstraction
	Slide 26: Knitting Levels of Abstraction
	Slide 27: Stitch-Level Abstractions: Meshes
	Slide 28: Stitch-Level Abstraction: Graphs
	Slide 29: Visual Stitch-Level Programming
	Slide 30: Knitting Levels of Abstraction
	Slide 31: Stitches Aren’t the Whole Story
	Slide 32: Stitches Aren’t the Whole Story
	Slide 33: Computation Design of Knit Templates
	Slide 34: Knitting is Customizable
	Slide 35: Knitting is Discrete
	Slide 36: Knit Design Axes
	Slide 37: Knit Templates
	Slide 38: Overview
	Slide 39: Coarse Knit Meshes
	Slide 40: Insight I: Why Patches?
	Slide 41: Insight II: Why Quads?
	Slide 42: Composition Rules
	Slide 43: Composition Rules
	Slide 44: A Note About Singularities
	Slide 45: Overview
	Slide 46: Design Tool Overview
	Slide 47: Patch Design
	Slide 48: Design Tool Overview
	Slide 49: Patch Labeling
	Slide 50: Patch Labels
	Slide 51: Results
	Slide 52: Results
	Slide 53: Composition Rules
	Slide 54: Shape Variation
	Slide 55: Future: Better Tesselations, Bigger Patches
	Slide 56: Knitting Levels of Abstraction
	Slide 57: Stitch-level abstraction
	Slide 58: Stitch-level abstraction
	Slide 59: Shaping via stitch irregularities/singularities
	Slide 60: Short row shaping example
	Slide 61: “Whole-garment” setting
	Slide 62: Knitting time function
	Slide 65: Helix-free constraint (Autoknit Property 2)
	Slide 66: Foliations & Stripes-Based Approaches
	Slide 67: Three Main Concepts
	Slide 68: Stripe Textures on Surfaces
	Slide 69: Stripe Texturing
	Slide 70: Helix-Free Stripes for Knit Graph Design
	Slide 71: Spinning forms
	Slide 72: Spinning forms
	Slide 73: Three Main Concepts
	Slide 74: Foliations as vector field flows
	Slide 75: An aside
	Slide 76: Local stripe singularity structure
	Slide 77: Orbit complex cell types
	Slide 78: Simple orbit complex example
	Slide 79: A slightly more complex example
	Slide 80: Exact helicing => Tracing-free pipeline?
	Slide 81: Three Main Concepts
	Slide 82: But where do we place singularities?
	Slide 83: Curl quantization problem
	Slide 84: Intuitive sphere example
	Slide 85: Bent cylinder example
	Slide 86: An iterative strategy
	Slide 87: More intuitive user controls
	Slide 88: More intuitive user controls
	Slide 89: An even greater generalization?
	Slide 90: Knitting Levels of Abstraction
	Slide 91: Non-Manifold Knits
	Slide 92: Non-Manifold Knits
	Slide 93: Non-Manifold Knits
	Slide 94: Knitting Machine Constraints
	Slide 95: Topological Semantics for Knitting
	Slide 96: Important Material Properties
	Slide 97: Knit Transformations
	Slide 98: Knot Theory [Thompson, 1869]
	Slide 99: Topological Mappings and “Deformation”
	Slide 100: Tangles [Conway, 1970]
	Slide 101: Equivalence on Tangles
	Slide 102: Fenced Tangles SIGGRAPH ‘23
	Slide 103: Horizontal Composition
	Slide 104: Vertical Composition
	Slide 105: A Formal Semantics for Machine Knitting Programs
	Slide 106: Knitting Programs are Hard to Read
	Slide 107: A Small Knitout Program
	Slide 108: A Small Knitout Program
	Slide 109: A Small Knitout Program
	Slide 110: A Small Knitout Program
	Slide 111: A Small Knitout Program
	Slide 112: A Small Knitout Program
	Slide 113: State Dependence of Machine Knitting
	Slide 114: State Dependence of Machine Knitting
	Slide 115: State Dependence of Machine Knitting
	Slide 116: Formal Knitout Validity
	Slide 117: Formal Knitout Semantics
	Slide 118
	Slide 119: Formal Knitout Semantics
	Slide 120: Formal Knitout Semantics
	Slide 121: Rewrite Rules
	Slide 122: Improve Fabrication Time
	Slide 123: Program Optimizations
	Slide 124: A Formal Semantics for Machine Knitting Programs
	Slide 125: Compilation Process
	Slide 126: Instruction Graphs SIGGRAPH Asia ‘24
	Slide 127: Knitting Semantics
	Slide 128: Formal Knitout to Instruction Graphs
	Slide 129: Lifting Formal Knitout to Instruction Graphs
	Slide 130: Instruction Graphs to Formal Knitout
	Slide 131: Instruction Graphs to Formal Knitout
	Slide 132: What is Machine Knitable?
	Slide 133: What is Machine Knitable?
	Slide 134: What is Machine Knitable?
	Slide 135: What is Machine Knitable?
	Slide 136: Lowering UFO IG to knitout
	Slide 137: Compilation Pipeline
	Slide 138: Compilation Pipeline
	Slide 139: Compilation Pipeline
	Slide 140: What isn’t Machine Knitable?
	Slide 141: Alternative Program Semantics
	Slide 142: Compilation from Instruction Graphs to Formal Knitout
	Slide 143: Knitting Levels of Abstraction
	Slide 144: The Fabrication Workflow
	Slide 145: Interesting Future Work & Open Problems
	Slide 146: Interesting Future Work & Open Problems
	Slide 147: Interesting Future Work & Open Problems
	Slide 148: Interesting Future Work & Open Problems
	Slide 149: Interesting Future Work & Open Problems
	Slide 150: Interesting Future Work & Open Problems
	Slide 151: References
	Slide 153: Thanks & Questions!

