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Nature materials

Trabecular structure of bone

Venation pattern of dragonfly wing

Scale skin of Pangolin 4



What is metamaterials?

● Materials with tailored small-scale structures are metamaterials.
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Mechanical Metamaterials

● Carefully designed microstructures allow for various macroscopic material 

properties with a single material
○ High stiffness-to-weight ratio

○ High durability

○ High energy absorption

○ Negative Poisson's ratio …

6
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Application - Soft Robotics

[Pascali et al. 2022] [Jeong et al. 2018] [Gao et al. 2023] 7



Application - Wearables

[Tang et al. 2023] [Luo et al. 2022] [Deng et al. 2022]

8



Design Challenges

● Forward prediction and characterization.

● Inverse design.

○ Nonlinear effect

○ High-dimensional design space

Strong anisotropy ContactLarge deformation/ 

Nonlinearity

9



Outline Today

● Introduction to Computational Design of Metamaterials

● Computational Models

○ Rigid Body, Finite Element Method, Discrete Elastic Rods

● Numerical Homogenization

● Case Study1: Mechanical Characterization

○ Discrete Interlocking Materials

● Numerical Methods in Inverse Design

● Case Study2: Metamaterials Design with Desired Behaviors

○ Inverse Design of Structured Surfaces and Discrete Interlocking Materials

10



Computational Model

● Material characterization under static equilibrium.

Rigid elements Elastic rods network

Finite Element Method

Continuum media

Discrete elastic rodsRigid body
11



Rigid Body

Compute static equilibrium state of rigid bodies with contact by an unconstrained 

minimization problem

argmin
𝐪

𝐸 = 𝐸Ext 𝐪 + 𝐸Coll(𝐪)

𝐪𝑖 = (𝐓𝑖 , 𝛚𝑖)
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Rigid Body

Vertex position of a rigid body

𝐱 = 𝐓𝑖 + 𝐑 𝛚𝑖 𝐕

● The rotation matrix is computed by the Rodrigues’ Rotation Formula

𝑅 𝜔 = 𝐈 + sinc 𝛚 𝛚 + 2sinc2
𝛚

2
𝛚 2

𝐪𝑖 = (𝐓𝑖 , 𝛚𝑖)
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Rigid Body

We use incremental potential contact (IPC) [Li et al. 2020] to compute contact energy

𝐸𝐶𝑜𝑙𝑙 = 𝜅

𝑘∈𝐶

𝑏(𝑑𝑘 𝐱 , መ𝑑)

● 𝑏 is the barrier potential

𝑏 𝑑, መ𝑑 = ቐ
− 𝑑 − መ𝑑

2
ln(𝑑/ መ𝑑) 0 < 𝑑

0 𝑑 ≥ መ𝑑

𝐩

𝑑 መ𝑑
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Rigid Body

Solve the unconstrained minimization problem via Newton’s method

argmin
𝐪

𝐸 = 𝐸Ext 𝐪 + 𝐸Coll(𝐪)

Newton’s method:

● Start from initial guess 𝐪0
● For each iteration (until convergence)

○ Compute gradient ∇𝐪𝑖E, Hessian∇𝐪𝑖
2 E

○ Compute search direction Δ𝐪𝑖 = ∇𝐪𝑖
2 E

−1
∇𝐪𝑖E

○ Compute largest intersection-free step size 𝛼𝑚 via Continuous Collision Detection (CCD)

○ Back tracking line search 𝛼 with maximum step size 𝛼𝑚
○ 𝐪𝑖+1 = 𝐪𝑖 +𝜶 ⋅ Δ𝐪𝑖
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Finite Element Method

● For a deformable body, identify the
- Undeformed state ഥΩ ⊂ 𝐑3 describe by positions ത𝐱

- Deformed state Ω ⊂ 𝐑3 describe by positions 𝐱

● Displacement filed 𝐮 describe Ω in terms of ഥΩ: 

𝐮 ത𝐱 : ഥΩ → Ω 𝐱(ത𝐱) = ത𝐱 + 𝐮(ത𝐱)

ഥΩ
Ω

ത𝐱

ത𝐱 + 𝐮(ത𝐱)𝐮(ത𝐱)

𝑥

𝑦

𝑧

𝐱
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Finite Element Method

● Consider material points ത𝐱𝟏 and ത𝐱𝟐 and ҧ𝐝 = ത𝐱𝟐 − ത𝐱𝟏 such that | ҧ𝐝| is 

infinitesimal

● The deformed vector

𝐝 = 𝐱𝟐 − 𝐱𝟏 = ത𝐱𝟐 + 𝐮 ത𝐱𝟐 − ത𝐱𝟏 − 𝐮 ത𝐱𝟏

= ҧ𝐝 + 𝐮 ത𝐱𝟏 + ҧ𝐝 − 𝐮 ത𝐱𝟏

≈ ҧ𝐝 + 𝐮 ത𝐱𝟏 + 𝛁𝐮 ҧ𝐝 − 𝐮 ത𝐱𝟏 = 𝐈 + 𝛁𝐮 ҧ𝐝

ഥΩ
Ω

ത𝐱𝟏 𝐱𝟏

𝑥

𝑦

𝑧

ത𝐱𝟐
ҧ𝐝

𝐱𝟐

𝐝

Deformation 

gradient 𝐅
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Finite Element Method

● Deformation gradient 𝐅 = 𝐈 + 𝛁𝐮 maps undeformed vectors to deformed 

vectors as 𝐝 = 𝐅 ҧ𝐝

● Alternatively, we can write

𝐅 =
𝜕𝐱

𝜕ത𝐱
=

𝜕

𝜕ത𝐱
ത𝐱 + 𝐮 ത𝐱 = 𝐈 + 𝛁𝐮

● Measure change in length squared in arbitrary directions,

𝐝𝑇𝐝 − ҧ𝐝𝑇 ҧ𝐝 = ҧ𝐝𝑇(𝐅T𝐅 − 𝐈) ҧ𝐝

● Green strain

𝐄 =
1

2
𝐅T𝐅 − 𝐈 =

1

2
(∇𝒖 + ∇𝒖 + ∇𝒖𝑇∇𝒖)

● Neglecting quadratic terms leads to the linear Cauchy strain

𝛆 =
𝟏

𝟐
∇𝒖 + ∇𝒖 =

𝟏

𝟐
𝐅 + 𝐅T − 𝐈
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Finite Element Method

● Divide input solid model into elements

● Linear simplicial elements

ҧ𝑥1

ҧ𝑥2

ҧ𝑥1

ҧ𝑥2

ҧ𝑥3

ҧ𝑥1

ҧ𝑥2

ҧ𝑥3

ҧ𝑥4

1D: Line segment 2D: Triangle 3D: Tetrahedron
19



Finite Element Method

● 4-node tetrahedron has 4 linear basis functions

● Basis function are linear

𝑁𝑖 ҧ𝑥, ത𝑦, ҧ𝑧 = 𝑎𝑖 ҧ𝑥 + 𝑏𝑖 ത𝑦 + 𝑐𝑖 ҧ𝑧 + 𝑑𝑖

● From 𝑁𝑖 ത𝐱𝑗 = 𝛿𝑖𝑗, we obtain coefficient by solving

ҧ𝑥1
ҧ𝑥2

ത𝑦1
ത𝑦2

ҧ𝑧1
ҧ𝑧2

1
1

ҧ𝑥3
ҧ𝑥4

ത𝑦3
ത𝑦4

ҧ𝑧3
ҧ𝑧4

1
1

𝑎𝑖
𝑏𝑖
𝑐𝑖
𝑑𝑖

=

𝛿1𝑖
𝛿2𝑖
𝛿3𝑖
𝛿4𝑖

ҧ𝑥1

ҧ𝑥2

ҧ𝑥3

ҧ𝑥4
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Finite Element Method

● Solve for coefficients of 𝑁1

0 0
1 0

0 1
0 1

0 1
0 0

0 1
1 1

𝑎1
𝑏1
𝑐1
𝑑1

=

1
0
0
0

● 𝑁1 ҧ𝑥, ത𝑦, ҧ𝑧 = − ҧ𝑥 − ത𝑦 − ҧ𝑧 + 1

● 𝑁2( ҧ𝑥, ത𝑦, ҧ𝑧) = ҧ𝑥

● 𝑁3( ҧ𝑥, ത𝑦, ҧ𝑧) = ത𝑦

● 𝑁4( ҧ𝑥, ത𝑦, ҧ𝑧) = ҧ𝑧
V1(0,0,0) V2(1,0,0)

V4(0,0,1)

V4(0,1,0)
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Finite Element Method

● Interpolate using basis functions

ത𝐱 ҧ𝑥, ത𝑦, ҧ𝑧 = 

𝒊=𝟏

𝒏𝒆

𝑁𝑖 ҧ𝑥, ത𝑦, ҧ𝑧 ത𝐱𝒊 𝐱 ҧ𝑥, ത𝑦, ҧ𝑧 = 

𝒊=𝟏

𝒏𝒆

𝑁𝑖 ҧ𝑥, ത𝑦, ҧ𝑧 𝐱𝒊

● Deformation gradient

𝐅 =
𝜕𝐱 ത𝐱

𝜕ത𝐱
=

𝑖=0

4

𝐱𝑖
𝜕𝑁𝑖
𝜕ത𝐱

T

● 𝑁𝑖 are linear on elements, 𝐅 ∈ 𝐑3×3 is constant within a linear tetrahedral 

element .

● Hence, element energy 𝐸 = ഥΩ𝑒
Ψ𝑑𝑉 = Ψ 𝐅 ⋅ ത𝑉𝑒

ҧ𝑥1

ҧ𝑥2

ҧ𝑥3

ҧ𝑥4
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Finite Element Method

● Material model links strain to energy (and stress)

● Linear isotropic material ( generalized Hooke’s law )

- Energy density Ψ =
1

2
𝜆tr 𝜺 2 + 𝜇tr(𝛆2)

- Cauchy stress 𝜎 =
𝜕Ψ

𝜕𝜀
= 𝜆tr 𝛆 𝐈 + 2𝜇𝜺

- 𝜆 and 𝜇 are Lame parameters.

● Nonlinear elasticity, replace Cauchy strain with Green strain 

- St. Venant-Kirchhoff material (StVK)

- Energy density Ψ =
1

2
𝜆tr 𝐄 2 + 𝜇tr(𝐄2)
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● Discrete Kirchhoff elastic rods

- Stretching energy

- Bending energy

- Twisting energy

𝐸𝑒𝑙𝑎𝑠𝑡𝑖𝑐 = 𝐸𝑠 + 𝐸𝑏 + 𝐸𝑡

Discrete Elastic Rods

ത𝐱𝑖−1
ത𝐱𝑖

ത𝐱𝑖+1𝐭𝑖−1 𝐭𝑖

ҧ𝐝1
𝑖−1

ҧ𝐝2
𝑖−1

ҧ𝐝1
𝑖

ҧ𝐝2
𝑖

𝜃𝑖−1
𝜃𝑖

Discrete framed curve

[Bergou et al. 2008] 24



Discrete Elastic Rods - Stretching

● Elastic stretching energy

𝐸𝑠 =
1

2


𝑗=0

𝑛

𝑘𝑠
𝑗
𝜀𝑗

2
𝐿𝑗

with axial strain 𝜀𝑗 =
𝑙𝑗−𝐿𝑗

𝐿𝑗

𝑙𝑗

𝐿𝑗

25



Discrete Elastic Rods - Bending

● Elastic Bending energy

𝐸𝑏 =
1

2


𝑖=1

𝑛
1

ҧ𝑙
𝜅𝑖 − ҧ𝜅𝑖

𝑇𝐵𝑖(𝜅𝑖 − ҧ𝜅𝑖)

𝐱𝑖−1
𝐱𝑖 𝐱𝑖+1𝐭𝑖−1 𝐭𝑖

𝐝1
𝑖−1

𝐝2
𝑖−1

𝐝1
𝑖

𝐝2
𝑖
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Discrete Elastic Rods - Twisting

● Parallel transport is a minimum rotation that aligns two vectors.

𝐏𝐫1
r2 = 𝐑

𝐫1 × 𝐫2
𝐫1 × 𝐫2

, ∠ 𝐫1, 𝐫2

ത𝐱𝑖−1
ത𝐱𝑖

ത𝐱𝑖+1
𝐱𝑖−1

𝐱𝑖

𝐱𝑖+1

ҧ𝐭𝑖−1 ҧ𝐭𝑖 𝐭𝑖−1
𝐭𝑖𝐏𝐫1

𝐫2

Parallel

Transport

ҧ𝐝1
𝑖−1

ҧ𝐝2
𝑖−1

ҧ𝐝1
𝑖

ҧ𝐝2
𝑖

𝐝1
𝑖−1

𝐝2
𝑖−1

𝐝1
𝑖

𝐝2
𝑖

Rest state Deformed state
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Discrete Elastic Rods - Twisting

● Measure difference between frames

○ Parallel transport frames by 𝐏𝐭𝑖−1
𝐭𝑖

○ Measure angle difference Δ𝜃

● Twist

𝑚𝑖 = 𝜃𝑖 − 𝜃𝑖−1 + Δ𝜃

● Elastic twisting energy

𝐸𝑡 =
1

2


𝑖=1

𝑛
𝛽𝑖 𝑚𝑖 − ഥ𝑚𝑖

2

ҧ𝑙𝑖

𝐱𝑖−1

𝐱𝑖

𝐱𝑖+1

𝐭𝑖−1
𝐭𝑖

𝐝1
𝑖−1

𝐝2
𝑖−1

𝐝1
𝑖

𝐝2
𝑖

Δ𝜃
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Numerical Homogenization

● Design tileable metamaterial based on unit cells.

30



Numerical Homogenization

● Target: Macroscopic material properties from microscopic geometry

2D

3D

Microscopic structure Directional stiffness / Poisson’s ratio

31



Macromechanical model

Anisotropic Kirchhoff plates 

● Strain energy density

𝑊 𝛜, 𝛋 = 𝑊𝑀 +𝑊𝐵 =
1

2
𝛜 ∶ ℂ ∶ 𝛜 +

1

2
𝛋 ∶ 𝔹 ∶ 𝛋

● Membrane and bending stress

𝛔 = ℂ ∶ 𝛜 𝐌 = 𝔹 ∶ 𝛋

32



Numerical Homogenization

Problems:

● Regular simulation does not consider tiling

● How to apply directional deformations?

● Fix the positions of vertices will artificially stiffen the structure

Material pattern

Periodic tiling
33



In-plane Periodic Boundary Conditions

● In-plane periodic boundary conditions

𝐱𝑗 = 𝐱𝑖 + 𝐝𝑖𝑗

34



Macroscopic In-plane Deformation

● Apply biaxial deformation

𝐝𝑖𝑗 = 𝜀𝑝( ҧ𝐝𝑖𝑗
T𝐝𝑝)𝐝𝑝+ 𝜀𝑜( ҧ𝐝𝑖𝑗

T𝐝𝑜)𝐝𝑜

● Macroscopic deformation gradient

𝐅macro = 𝜀𝑝𝐝𝑝𝐝𝑝
T + 𝜀𝑜𝐝𝒐𝐝𝑜

T

or    𝐅macro = 𝐱𝑖 − 𝐱𝑗 𝐱𝑘 − 𝐱𝑙 𝐗𝑖 − 𝐗𝑗 𝐗𝑘 − 𝐗𝑙 −1

𝐗𝑗

𝐗𝑖

𝐝𝑝

𝐝𝑜
𝐝𝑖𝑗
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Macroscopic In-plane Deformation

● Anisotropic Kirchhoff plates membrane stress 𝛔 = ℂ ∶ 𝛜

● Macroscopic Cauchy strain tensor

𝝐macro =
1

2
𝐅macro + 𝐅macro

T − 𝐈

● Macroscopic Cauchy stress tensor

𝛔macro = 𝐟0 𝐟1 𝐧0 𝐧1 −1

𝐅macro

36



Characterizing In-plane Mechanical Properties

● Fit the homogenized compliance tensor 𝕊 = ℂ−1 by solving

𝕊H = argmin
𝕊



𝑖=1

𝑁
1

| 𝛜𝐢 |𝐹
2 𝕊 ∶ 𝛔𝑖 − 𝛜𝑖 𝐹

2

● Directional Young’s modulus

𝐸 𝐝 =
1

𝐝𝐝T ∶ 𝕊 ∶ 𝐝𝐝T

● Directional Poisson’s ratio

𝜈 𝐝 = −
𝐝𝐝T ∶ 𝕊 ∶ 𝐧𝐧T

𝐝𝐝T ∶ 𝕊 ∶ 𝐝𝐝T
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Bending Periodic Boundary Conditions

● Bending with single bending curvature 𝜅𝑐 with direction 𝐯

𝐱𝑗 = 𝐑𝑖𝑗𝐱𝑖 + 𝐝𝑖𝑗

𝐗𝑗

𝐗𝑖

𝐯

𝑙𝑟

𝑙𝑎 𝐗𝑖

𝐗𝑗

𝐝𝑖𝑗

𝐑𝑖𝑗ҧ𝐝𝑖𝑗
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Characterizing Bending Mechanical Properties

● Fit the homogenized bending stiffness by solving

𝔹𝐻 = argmin
𝔹



𝑖=0

𝑀
1

2
𝛋𝑖 ∶ 𝔹 ∶ 𝛋𝑖 −𝑊𝑖

2

● Directional bending stiffness

𝑏 𝐝 = 𝐝𝐝T ∶ 𝔹 ∶ 𝐝𝐝T

39
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P. Tang, S. Coros, B. Thomaszewski. Beyond Chainmail: Computational Modeling of 
Discrete Interlocking Materials. ACM SIGGRAPH 2023



Chainmail-like Interlocking Materials

42



Discrete Interlocking Materials

43



Discrete Interlocking Materials

Element Shape + Connectivity

Macromechanical Properties

44



Discrete Interlocking Materials

45



Goal

A new computational framework for modeling and 

characterizing DIM composed of quasi-rigid elements.

46



Overview

47

Stretch

Bend

Native-Scale Simulation
Data Generation & 

Strain-space Construction Macromechanical Simulation



Native-Scale Model

● We simulate static equilibrium states of DIM as rigid bodies with contact by an 

unconstrained minimization problem

min
𝐪

𝐸Ext 𝐪 + 𝐸Coll(𝐪)

𝐪𝑖 = (𝐓𝑖 , 𝝎𝑖)

48



Macro-Scale Deformations – In-plane

Periodicity:

𝐓𝑗 = 𝐓𝑖 + 𝐭𝑖𝑗
𝛚𝑗 = 𝛚𝑖

49



Macro-Scale Deformations – Out-of-plane

● Single curvature states with periodic boundary conditions can be conveniently 

modeled.

● However, one cannot, in Euclidean geometry, define a finite-sized, double-

curvature patch that tiles with itself [Sausset and Tarjus 2007].

50



Macro-Scale Deformations – Out-of-plane

● Circular finite patches of paraboloid surfaces

𝑧 = 𝐴𝑥2 + 𝐵𝑦2 + 𝐶𝑥𝑦

51



Native-Scale Simulations

52



Strain-Space Representation
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Macro-Scale Model

𝐬𝑖

𝑑

54



Macro-Scale Model

𝐬𝑖

𝑑
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Threefold Symmetric Chainmail
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Threefold Symmetric Chainmail
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Threefold Symmetric Chainmail
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Torus Knot Material
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Torus Knot Material
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Scale Mail
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Scale Mail
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Scale Mail
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Forward Problem

● Consider a 2D elastic bar

● Forward problem: given design parameter 𝐩 and external force 𝐟ext, compute 

equilibrium configuration 𝐱 by solving

𝐟 𝐱, 𝐩 = 𝐟ext + 𝐟int 𝐱, 𝐩 = 𝟎

Undeformed state 𝐩 ∈ 𝐑2𝑛 Deformed state 𝐱 ∈ 𝐑2𝑛

External forces 𝐟ext ∈ 𝐑2𝑛

65



Forward Problem

● Change the undeformed state 𝐩 changes the equilibrium state 𝐱

● How can we determine 𝐩 that leads to a desired equilibrium state?

?
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Inverse Design Objective

● Introduce objective that quantifies distance to target

𝑇 𝐱 =
1

2
𝐱 − 𝐱tar

2

● Objective: find 𝐱 and 𝐩 such that 𝐱 minimizes 𝑇

● Constraint: 𝐱 has to be an equilibrium state for 𝐩, i.e., 𝐟 𝐱, 𝐩 = 𝟎

Target shape 𝐱tar

𝐱 − 𝐱tar
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Inverse Problem

● Formulation

min
𝐱

𝑇(𝐱, 𝐩)

s.t. 𝐟 𝐱, 𝐩 = 𝟎

● Interpretation:

From all possible equilibrium states 𝐱,

i.e., those 𝐱 for which there exists 𝐩 such that 𝐟 𝐱, 𝐩 = 𝟎,

find the one that minimizes 𝑇(𝐱).
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Constrained Optimization

● Generic optimization problem

min
𝐱

𝑓(𝐱) s.t. 𝐂 𝐱 = 𝟎

● Unknowns 𝐱 ∈ 𝐑𝑛

● Objective function 𝑓 𝐱 : 𝐑𝑛 → 𝐑

● Constraints 𝐂 𝐱 : 𝐑𝑛 → 𝐑𝐦

How can we solve this optimization problem?
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Numerical Methods in Inverse Design

● Sequential Quadratic Programming (SQP)

● Sensitivity Analysis

● Interior Point Methods

● Augmented Lagrangian Method

● …
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SQP for Inverse Problems

● Lagrangian 𝐿 𝐱, 𝐩, 𝛌 = 𝑇 𝐱 + 𝐟 𝐱, 𝐩 T𝝀

- 𝐱 deformed positions

- 𝐩 undeformed positions                   𝐬 = 𝐱, 𝐩, 𝛌 T ∈ 𝐑3⋅𝐷⋅𝑛

- 𝛌 Lagrangian multipliers

● First order optimality conditions: ∇𝑠𝐿 = 𝟎

∇𝐱𝐿 = ∇𝐱𝑇 𝐱 + ∇𝐱𝐟 𝐱, 𝐩
T𝝀 = 0

∇𝐩𝐿 = ∇𝐩𝑇 𝐱 + ∇𝐩𝐟 𝐱, 𝐩
T𝝀 = 0

∇𝝀𝐿 = 𝐟 𝐱, 𝐩 = 0
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SQP for Inverse Problems

● Given 𝐬, find Δ𝐬 such that

∇𝐬𝐿 𝐬 + Δ𝐬 = 𝟎 → ∇𝐬𝐬𝐿 ⋅ Δ𝐬 = −∇𝐬𝐿

∇𝐱𝐱𝑇 + ∇𝐱𝐱𝐟
T𝛌 ∇𝐱𝐩𝐟

𝐓𝛌 ∇𝐱𝐟
T

𝛌𝐓∇𝐱𝐩𝐟 ∇𝐩𝐩𝐟
T𝛌 ∇𝐩𝐟

T

∇𝐱𝐟 ∇𝐩𝐟 𝟎

⋅
Δ𝐱
Δ𝐩
Δ𝛌

= −

∇𝐱𝐿
∇𝐩𝐿

∇𝛌𝐿

● Indefinite matrix
○ Quadratic programming solver (MOSEK, GUROBI…)

● Apply Newton’s method to solve the problem.
○ Merit function, e.g., 𝑙1 merit function 𝜙 𝐬 = 𝑇 𝐬 + 𝜇σ𝑖 |𝑐𝑖(𝐬)|
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SQP Discussion

● SQP is a powerful optimization method, and it can be very fast

● Hessian of Lagrangian involves higher-order derivatives
○ Difficult and expensive to compute

○ can introduce indefiniteness

○ Alternative: use Quasi-newton methods to approximate Hessian

● SQP leads to large number of variables
○ One variable per DoF

○ One variable per parameter

○ One Lagrange multiplier per constraint
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Sensitivity Analysis

● In this problem, the design parameters 𝐩 are effective DoFs.

- 𝐱 = simulation(𝐩)

● For design, we need derivatives

𝑑𝑇

𝑑𝐩
=
𝜕𝑇

𝜕𝐱

𝑑𝐱

𝑑𝐩
+
𝜕𝑇

𝜕𝐩
● How to compute?

𝑑𝐱

𝑑𝐩
=
𝑑 simulation

𝑑𝐩

𝐩 𝐱
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Sensitivity Analysis

● Simulation map: 𝐱 = simulation(𝐩)

𝐟 𝐱, 𝐩 = 𝟎 has to hold always

● Any change in design parameters 𝐩 should lead to corresponding change in 

state 𝐱 such that 𝐟 𝐱, 𝐩 = 𝟎 is still satisfied.

𝑑𝐟

𝑑𝐩
= 0 →

𝜕𝐟

𝜕𝐱

𝑑𝐱

𝑑𝐩
+

𝜕𝐟

𝜕𝐩
= 0

𝑑𝐱

𝑑𝐩
= −

𝜕𝐟

𝜕𝐱

−1
𝜕𝐟

𝜕𝐩
Sensitivity Matrix
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Sensitivity Analysis

● Design objective gradient

∇𝐩𝑇 =
𝜕𝑇

𝜕𝐱

𝑑𝐱

𝑑𝐩
+
𝜕𝑇

𝜕𝐩

● Solve the problem by using Gradient Descent or LBSGS

Gradient Descent
Until Convergence:

Compute search direction Δ𝐩 = −∇𝐩𝑇

𝛼 = 1
Line search Loop:

𝐩L+𝟏 = 𝐩+ 𝛼Δ𝐩
𝐱L+1 = Simulation(𝐩L+1)
𝛼 = 𝛼/2
Until 𝑇𝐿+1 < 𝑇𝐿

End
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Adjoint Method

● Design objective gradient

∇𝐩𝑇 =
𝜕𝑇

𝜕𝐱

𝑑𝐱

𝑑𝐩
+
𝜕𝑇

𝜕𝐩
= −

𝜕𝑇

𝜕𝐱

𝜕𝐟

𝜕𝐱

−1
𝜕𝐟

𝜕𝐩
+
𝜕𝑇

𝜕𝐩

● The expensive part here is computing 
𝑑𝐱

𝑑𝐩
= −

𝜕𝐟

𝜕𝐱

−1 𝜕𝐟

𝜕𝐩
○ if number of state variables 𝐱 is large

○ If number of design parameters 𝐩 is large

● Avoid computing 
𝑑𝐱

𝑑𝐩
explicitly, defining adjoint vector 𝛌 ∈ 𝐑n as

𝜕𝐟

𝜕𝐱

T

𝛌 =
𝜕𝑇

𝜕𝐱

T

● Design objective gradient

∇𝐩𝑇 = −𝛌T
𝜕𝐟

𝜕𝐩
+
𝜕𝑇

𝜕𝐩
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Inverse Design of Metamaterials

● Forward problem, given design parameter 𝐩, compute equilibrium 

configuration 𝐱 by solving

𝐟 𝐱, 𝐩 = 𝐟ext + 𝐟int 𝐱, 𝐩 = 𝟎
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Inverse Design of Metamaterials

● Target: Microscopic geometry from macroscopic material properties

2D

Microscopic structureDirectional stiffness / Poisson’s ratio

3D
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Inverse Design Objective

● Introduce design objective that quantifies the distance to target

𝑇 𝐱 =
1

2𝑛


𝑖

𝑛
𝐸𝐻 𝐝𝑖
𝐸𝑡𝑎𝑟

− 1

2

Homogenized Young’s modulus

Target Young’s modulus 80



Outline Today

● Introduction to Computational Design of Metamaterials

● Computational Models

○ Rigid Body, Finite Element Method, Discrete Elastic Rods

● Numerical Homogenization

● Case Study1: Mechanical Characterization

○ Discrete Interlocking Materials

● Numerical Methods in Inverse Design

● Case Study2: Metamaterials Design with Desired Behaviors

○ Inverse Design of Discrete Interlocking Materials and Structured Surfaces
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P. Tang, B. Thomaszewski, S. Coros, B. Bickel. Inverse Design of Discrete 

Interlocking Materials with Desired Mechanical Behavior. ACM SIGGRAPH 2025
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Challenge

● How to inverse design Discrete Interlocking Materials with desired kinematic 

deformation limits?

● Designing with explicit triangle meshes is computational expensive.
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Challenge

84
[Du et al. 2024]



Implicit Contact Model

● Represent by parametric torus

𝑉𝑥(𝑢, 𝑣) = 𝑅 + 𝑟𝑐0 cos 𝑣 cos 𝑢

𝑉𝑦(𝑢, 𝑣) = 𝑅 + 𝑟𝑐0 cos 𝑣 sin 𝑢

𝑉𝑧(𝑢, 𝑣) = 𝑟𝑐1 sin 𝑣

● Contact potential between tori  𝑏 𝑑, መ𝑑 = ቐ
− 𝑑 − መ𝑑

2
ln(𝑑/ መ𝑑) 0 < 𝑑

0 𝑑 ≥ መ𝑑

● Minimum squared distance

min
𝐜𝑖𝑗

𝑑(𝐜𝑖𝑗, 𝐪𝑖𝑗) = 𝐕𝑖
𝑡 − 𝐕𝑗

𝑡 2
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Singularity
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Implicit Contact Model

● Revised contact potential 𝐸𝐶𝑜𝑙𝑙 = 𝜅σ𝑘∈𝐶 𝑠(𝐜, 𝐪) ⋅ 𝑏(𝐜, 𝐪, መ𝑑)

● Compute static equilibrium states by solving

min
𝐪

𝐸Ext 𝐪 + 𝐸Coll(𝐪)

● CCD to find maximum intersection-free step size 𝛼𝑡

min
𝛼𝑡

𝑑

s.t. 𝑑 𝛼𝑡 = min
𝐜𝑖𝑗

𝑑(𝐜𝑖𝑗, 𝐪𝑖𝑗 + 𝛼𝑡Δ𝐪𝑖𝑗)

0 ≤ 𝛼𝑡 ≤ 𝛼ℎ𝑖
○ If 𝑑 < 𝑑𝑡ℎ, we shrink 𝛼ℎ𝑖 by 0.9 until 𝑑 > 𝑑𝑡ℎ.
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Inverse Design of Deformation Limits

● In-plane objective function

min
𝐩

𝑇 =

𝑖

1

2
𝛆 𝐩, 𝜃𝑖 − 𝛆𝑡 𝜃𝑖

2

s.t. 𝐟planar 𝐲 𝐩 , 𝐩, 𝜃𝑖 = 0, ∀𝑖

𝐂𝑖𝑗 𝐩 > 𝜖𝑐, ∀ 𝑖, 𝑗 ∈ 𝐍

𝜖𝑙 < 𝐩 < 𝜖ℎ
● Out-of-plane objective function

min
𝐩

𝑇 =

𝑖

1

2
𝛋 𝐩, 𝜃𝑖 − 𝛋𝑡 𝜃𝑖

2

s.t. 𝐟bending 𝐲 𝐩 , 𝐩, 𝜃𝑖 = 0, ∀𝑖

𝐂𝑖𝑗 𝐩 > 𝜖𝑐, ∀ 𝑖, 𝑗 ∈ 𝐍

𝜖𝑙 < 𝐩 < 𝜖ℎ
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In-plane Deformation Limits

Before optimization After optimization
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In-plane Deformation Limits

Before optimization After optimization
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Out-of-plane Deformation Limits

Before optimization After optimization
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Out-of-plane Deformation Limits

Before optimization After optimization
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Fourfold Symmetric Material

93



4-in-1 Chainmail
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J. Montes, Y. Du, R. Hinchet, S. Coros, B. Thomaszewski. Differentiable Stripe 
Patterns for Inverse Design of Structured Surfaces. ACM SIGGRAPH 2023
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Motivation

[Knöppel et al. 2015]
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Motivation
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Motivation
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Goal

99

𝜕(𝒙, ෝ𝒙𝒊)

𝜕𝒗

Simulation sensitivities

𝜕𝒗

𝜕𝒑

Stripes eigenvector sensitivities



Generation of Stripe Patterns

100

min
𝒗

𝐸𝜓 =
1

2
𝒗𝑇𝑨 𝒑 𝒗 s. t. 𝒗𝑇𝑩𝒗 = 1

Phases 𝒗Vector field 𝒑

𝒗𝑖 = 𝑎𝑖 + 𝜄𝑏𝑖 → 𝑎𝑖 , 𝑏𝑖

1

𝜄



Generation of Stripe Patterns

101

Phases 𝒗

[𝑨 𝒑 − 𝜆𝑩]𝒗 = 0

Generalized eigenvalue problem

Levelset 𝝓Vector field 𝒑

𝝓(𝒗)



Multiplicity Two Eigenspace

102

NOT 

DIFFERENTIABLE

!!!



Constraining the eigenspace

103

min
𝒗

𝐸𝜓 =
1

2
𝒗𝑇𝑨 𝒑 𝒗 −

1

2
𝜆𝒗𝑇𝑩𝒗 −𝝁𝒃𝑘

𝑣𝑖 = (𝑎𝑖, 𝑏𝑖) 𝑣𝜃 = cos 𝜃 𝑣 + sin 𝜃 𝑣⊥𝑣𝑖
⊥ = (−𝑏𝑖 , 𝑎𝑖)

𝑏𝑘 = 0𝑣𝑘 = (𝑎𝑘, 𝑏𝑘)



Constraining the eigenspace

min
𝒗

𝐸𝜓 =
1

2
𝒗𝑇𝑨 𝒑 𝒗 −

1

2
𝜆𝒗𝑇𝑩𝒗 −𝝁𝒃𝑘

𝑨 𝑝 − 𝜆𝒗 −𝑩𝒗 𝒆𝑏𝑘
−𝑩𝒗 𝑇 0 0

𝒆𝑏𝑘
𝑡 0 0

𝜕𝑣

𝜕𝑝
𝜕𝑣

𝜕𝜆
0

=
−

𝜕2𝐸

𝜕𝒗𝜕𝒑
0
0
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Simulation and X-Fem

105

Soft

Stiff



Simulation (Solid SHells)

106

Midsurface 𝑿𝑖

𝑿𝑖

ഥ𝑿2𝑖 = 𝑿𝑖 − ℎ𝒏/2

ഥ𝑿2𝑖+1 = 𝑿𝑖 + ℎ𝒏/2

𝑿 =

𝑖

𝑁𝑖ഥ𝑿𝑖



Solid shells and X-Fem

107

𝐱 =

𝑖

𝑁𝑖𝒙𝑖+

𝑖

𝜓(𝜙)𝑁𝑖ෝ𝒙𝑖

𝒙𝑖, ෝ𝒙𝑖

𝜙−

𝜙+

𝜙 =

𝑖

𝑁𝑖𝜙𝑖



Macro-Mechanical Modulation
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Variable Stiffness Materials
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Compliant Gripper
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Soft Pneumatic Actuator
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Structural Optimization of Thin Shells
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Outline Today

● Introduction to Computational Design of Metamaterials

● Computational Models

○ Rigid Body, Finite Element Method, Discrete Elastic Rods

● Numerical Homogenization

● Case Study1: Mechanical Characterization

○ Discrete Interlocking Materials

● Numerical Methods in Inverse Design

● Case Study2: Metamaterials Design with Desired Behaviors

○ Inverse Design of Structured Surfaces and Discrete Interlocking Materials
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Outlook

● Neural metamaterial design.

114[Li et al. 2023]



Outlook

● Generative AI for metamaterial design.

115
[Xue et al. 2025]
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