
Rohan Sawhney, NVIDIA
Bailey Miller, Carnegie Mellon

Presenters

2

Ioannis Gkioulekas
CMU

Bailey Miller
CMU PhD

Keenan Crane
CMU

Rohan Sawhney
NVIDIA

(and their advisors)

3

NVIDIA Omniverse

4

5

66

Photorealistic image generation has revolutionized industries

Entertainment Pre-visualization

77

Photorealistic image generation will revolutionize more industries

Computer Vision [Vicini et al, 2023] Autonomous Driving [NVIDIA Drive Sim]

8

Physics beyond light transport

acoustic modeling

structural analysisthermal diffusion electrostatics

microfluidics biophysics

thermal diffusion structural analysisthermal diffusion electrostaticsthermal diffusionΔu = 0
Partial Differential Equations, e.g., Laplace Eq.

Δ :=
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

Partial Differential Equations (PDEs)

∂Ω

g(x)

u(x)

Ω

Δu = 0 on Ω
u = g on ∂Ω

9

Given: values on boundaryg Find: solution on interioru

PDEs describe a function implicitly in terms of derivatives, solve to
recover explicit function values

10

Integrated Circuits Design

11

Data Center Design

12

Data Center Design

Geometry Physics
(simple)(complex)

13

Geometric complexity has increased drastically

laser scanning / LiDAR additive manufacturing

neural radiance fields

text-to-3D

Traditional methods for solving PDEs

14

“Zoo” of solvers:
— finite difference methods
— finite element methods
— finite volume methods
— boundary element methods
— spectral methods
— …

Common thread: all use finite dimensional approximation

ϕi
Ω

∂Ω

⟨Δu, ϕi⟩ = 0, ∀i

Traditional methods for solving PDEs

15

error due to approximation
of geometry

error due to approximation
of functions

Inevitable consequence of finite dimensional approximation:

Geometry found in physical world is extremely complex

Example: high-resolution microCT scan

16

17

Complex geometry can take extremely long to mesh!

14 hours / 30 GB RAM
to generate “sim-ready” mesh
memory intensive & difficult to parallelize

Most geometry in the wild is not suitable for simulation

18

A bad mesh can yield a false impression of reality

19

FEM solution reference solution

Example: geodesic distance via FEM

N. Sharp & K. Crane, A Laplacian for Nonmanifold Meshes (2020)

20

If meshing is slow, who cares if solver is fast?

cleanup / mesh repair

tetrahedralize

FEM solve
input boundary
representation

high-quality
surface mesh

volume mesh

PDE solutionfinite element method (FEM) pipeline

bottleneck

Meshing is always the bottleneck for simulation!

21

Robust meshing is still hard, even after 20+ years

22

Not likely to ever be completely “solved”:

TriWild: Robust Triangulation With
Curve Constraints [Hu et al. 2019]

Fast Tetrahedral Meshing in
the Wild [Hu et al. 2020]

Tetrahedral Meshing in the Wild
[Hu et al. 2018]

Robust Tetrahedral Meshing of
Triangle Soups [Spillman et al. 2006]

Tetrahedral Mesh Generation by
Delaunay Refinement

[Shewchuk 1998]

A Quality Tetrahedral Mesh
Generator and Three-Dimensional
Delaunay Triangulator [Si 2006]

23

Traditional PDE solvers require volumetric meshing

Robust meshing can be wildly unpredictable

24

Even very simple geometry can take hours to mesh:

Input (Thingi10k #996816) FastTetWild, 1 hour 25 minutes

Hu et al, “Fast Tetrahedral Meshing in the Wild” (2020)

Even when meshing “succeeds”, critical details can be lost

25

boundary mesh (input) FastTetWild (output boundary)

Hu et al, “Fast Tetrahedral Meshing in the Wild” (2020)

To faithfully simulate nature, we must be able to
handle a much greater level of geometric complexity.

Photorealistic Image Generation
Problem: given a description of a 3D scene (geometry, materials, lights,
camera), synthesize an image indistinguishable from a photograph.

3D model synthesized image

28

Rendering: from Finite Elements to Monte Carlo

mesh scene

setup large matrix

perform
global solve

global & painful!Early days of rendering: finite element radiosity

29

Rendering: from Finite Elements to Monte Carlo

Monte Carlo ray tracing avoids meshing entirely, via repeated random sampling, via repeated random sampling

ray-scene intersections

local & easy!

Monte Carlo ray tracing avoids meshing

recursively shoot rays

Monte Carlo methods

30

Evaluate an integral by averaging its integrand N times:Evaluate an integral by averaging its integrand N times:

∫Ω
f(x) dx ≈

|Ω |
N

N

∑
i

f(Xi)

19 billion triangles19 billion triangles

Monte Carlo rendering can now handle
immense geometric complexity

1.2 billion triangles1.2 billion triangles16 billion triangles16 billion triangles

NASA’s Curiosity Mars Rovera rendering of

Rendering “just works,” and

gives immediate feedback, no

matter what you throw at it.

“Thermal modeling is required beginning at the project conceptual design
stage and continuing through preliminary and detailed design stages ...
simplified calculations and rules of thumb are useful at this stage, but a
computer model provides the ability to evaluate and respond quickly to
proposed system trade-offs.”

—NASA Guidelines for Thermal Analysis of Spacecraft Hardware

33

Physics beyond light transport

acoustic modeling

structural analysisthermal diffusion electrostatics

microfluidics biophysics

thermal diffusion structural analysisthermal diffusion electrostaticsthermal diffusion

How can we make
simulation more
like rendering?

From Ray Tracing to Random Walks

ray tracing walk on spheres [Muller 1956]

34

Recursive random walks for solving the Laplace equation Δu = 0

From Ray Intersections to Closest Point Queries

Ray Intersection Query Closest Point Query

35

Meshing is hard…finding closest point is easy!

36

EASYHARD

37

Thermal analysis of Curiosity Mars rover

Analyze locally
in region

of interest!

Simulate only what you see!

39

Thermal analysis is traditionally difficult in design phase

input boundary mesh boundary of tetrahedral mesh

30 min 2 hours

8 hours

Monte Carlo PDE solvers are discretization-free!

40

May never be able to solve certain PDEs w Monte Carlo…

41

NASA’s Curiosity Mars Rovera rendering of

Rendering “just works,” and

gives immediate feedback, no

matter what you throw at it.

Build a “ray tracer”
for physics?

Course overview

43

Part 5: WoS as simulation of Brownian motion (Rohan)

Part 6: Variance reduction (Bailey)

Part 7: Evaluation, recent work & future directions (Bailey)

Parts 1–2: Basics of Monte Carlo & WoS for Laplace eq (Bailey)
— key concepts: estimation of integrals, sample generation, bias

Parts 3–4: WoS for Poisson eq (Bailey) & Neumann boundary conditions (Rohan)
— key concept: importance sampling

44

PART 1:
Basics of Monte Carlo

Thanks in advance!

Many slides based on
Keenan Crane &

Gautam Iyer’s
Monte Carlo course at CMU,
thanks Keenan & Gautam!!

45

What are Monte Carlo methods?

• Broadly, Monte Carlo methods are algorithms that
use repeated random sampling to obtain approximate
solutions to difficult computational problems

• simulation, integration, optimization, sampling

• Not all randomized algorithms are Monte Carlo
methods.

• E.g., Las Vegas algorithms use repeated random trials
to get an exact solution, but with nondeterministic
runtime (e.g. randomized quick sort)

algorithms

randomized
algorithms

Monte Carlo
methods

46

motivation: selling custom shaped cookies, want to set price based on cookie size
challenge: how do you compute the area of an arbitrary cookie?
naive: compute analytically or decompose into simple shapes

r b

π ⋅ r2 b ⋅ h

h

8

∑
i=1

bi ⋅ hi

2
⏟

triangle area

6

∑
i=1

bi ⋅ hi
2

⏟
triangle area

+
6

∑
j=1

R2
j cos−1 (

Rj − hj

Rj) − (Rj − hj) ⋅ 2 ⋅ Rj ⋅ hj − h2
j

circular segment area

area becomes less trivial to compute

?

Flavor of Monte Carlo: computing area of a cookie

47

Monte Carlo approach to computing area:
1. throw N random darts at plate containing the cookie
2. compute proportion of darts that hit cookie
3. multiply proportion by area of plate

cookie area ≈ # darts hit cookie

total darts thrown
plate area

now we can easily handle complex shapes:

dart hits cookie

dart misses cookie

bounding
plate

Flavor of Monte Carlo: computing area of a cookieFlavor of Monte Carlo: computing area of a cookieFlavor of Monte Carlo: computing area of a cookieFlavor of Monte Carlo: computing area of a cookieFlavor of Monte Carlo: computing area of a cookieFlavor of Monte Carlo: computing area of a cookie

48

• algorithms can be extremely simple
• solution is approximate, but correct eventually
• easy to parallelize: average independent trials

Already have some important takeaways:

area
estimated area

number of darts thrown

Flavor of Monte Carlo: computing area of a cookie

49

Solving problems with integration

• Many problems can be reframed as integration problems: computing area, light
transport, thermal conduction, maximum likelihood estimation, etc.

Find such thatu
Δu = f

write down problem

u(x) = ∫ℝN

G(x, y)f(y) dy

rewrite as integral evaluate integral

u(x) =
1
N

N

∑
i=1

G(x, yi)f(yi)
p(yi)

• Primarily focus on using integration to solve partial differential equations with walk on
spheres

50

Most integrals do not admit closed form solutions

• Forgot your integration rules? No problem!
• Analytic integration is often not a viable option
• Even simple looking expressions may have no integral expression in terms of
elementary functions (Liouville theorem).

51

Numerical quadrature

I = ∫
b

a
f(x) dx ≈

n

∑
i=1

f (xi+1 + xi

2) Δx

• Divide the integral up into discrete intervals we can approximate as constant functions
• Deterministic and straightforward to evaluate in this 1D example, what’s the catch?

Δx
a b

f(x)

example:
(Midpoint rule)

xi + xi+1

2

f (xi + xi+1

2)

52

Curse of dimensionality

• In higher dimension, we divide the domain up into higher order voxels
• Cost grows exponentially as dimension increases!

O(n) O(n2) O(n3) O(nk)

53

 Confounding issue: often don’t have a nice smooth integrand

smooth oscillatory

Aliasing

spiky

54

Nyquist-Shannon sampling theorem says we’re basically ok as long as sample rate is
adapted to the highest frequency…

oscillatory

Aliasing — Nyquist-Shannon

more samples

…but not every function has a highest frequency

out of luck

55

 These aren’t just pathological cases, these features are commonly found in nature

Aliasing in real functions

high frequency
entire city skyline

with buildings

discontinuities
bridge masks
background

spikes
Lighting from
cars on bridge

56

These seemingly hopeless integration problems can become tractable with the right
Monte Carlo methods

Inspiration from Monte Carlo rendering

real photograph rendered scene from “Big Hero 6”

57

random
sample point

uniformly distributed points

volume of
domain

Central idea: replace deterministic sample points with random ones

Monte Carlo to the rescue

xi

f(xi)

number of
samples

∫Ω
f(x) dx ≈

|Ω |
n

n

∑
i=1

f(Xi)
f(x)

Xi ∼ 𝒰Ω

Note: number of samples is not
fixed, can progressively add

more samples to refine estimate

x

f(f(f xixix)
1
n

n

∑
i=1

f(Xi)

|Ω |

58

Monte Carlo to the rescue

Solves both of the problems with quadrature

Always some chance of sampling high
frequency features—no “fixed”

highest frequency

Chose the amount of
computation to do since rate of
convergence does not depend

on dimension

59

A Monte Carlo estimator is a random variable since it is a function of random samples.

How do we know Monte Carlo integration is “correct”?

E [X] :=
n

∑
i=1

xi ⋅ p(xi)

 discrete

expected value: E [X] := ∫Ω
x ⋅ p(x) dx

 continuous

unbiased estimator is correct on average, for any n
consistent estimator is correct eventually, as
biased estimator converges, but to the incorrect value

n → ∞

I := ∫Ω
f(x) dx Xi ∼ 𝒰Ω

̂In =
|Ω |

n

n

∑
i=1

f(Xi)

E[̂In] = I

unbiased

P (lim
n→∞

E[In] = I)
consistent

unbiased

consistent

biased

I

N samples

es
tim

at
or

 v
al

ue

60

Easy to show that the expected value of the basic Monte Carlo estimator with uniformly
distributed samples is unbiased

E[̂In] = E [|Ω |
n

n

∑
k=1

f(Xk)] definition of ̂IN

=
|Ω |

n

n

∑
k=1

∫Ω
f(x)p(x) dx definition of expectation

=
1
n

n

∑
k=1

∫Ω
f(x) dx = I p(x) = 1/ |Ω |

Basic Monte Carlo estimator is unbiased

̂In :=
|Ω |

n

n

∑
i=1

f(Xi),

I := ∫Ω
f(x) dx

integral

Xk ∼ 𝒰Ω

estimator

=
|Ω |

n

n

∑
k=1

E [f(Xk)] linearity of expectation
E [X + Y] = E[X] + E[Y]

61

Theory and practice is a two way street
• Practical obstacles may motivate changes to
mathematical formulation

• E.g., different sampling strategies may be better
suited to different architectures

Numerical and computational issues

(16-bit floating point number)

Floating point
• Computers don’t operate on real numbers

float I = 0.0f;
for k=1,..,n {
 x = uniformSample();
 I += f(x)/(float)n;
}

Parallel implementation
• basic Monte Carlo is “embarrassingly parallel”
• Integrand may take a very different amount of
work, or use divergent memory accesses

63

PART 2:
WoS for Laplace Equation

Roadmap for solving Laplace PDE

u(xk) =
1

|∂B(xk) | ∫∂B(xk)
u(y) dy

mean value integral
integral representation

Walk on Spheres
Monte Carlo estimator

̂u(xi) = { ̂u(xi+1) if xi+1 ∉ ∂Ωϵ

g(xi+1)

∂B(xk)

u(x)
x1 x2x0

xk

∂Ωϵ

∂Ω

g(x)
u(x)

Δu = 0 on Ω
u = g on ∂Ω

Laplace PDE
differential form

Find such thatu

64

Laplace PDE with Dirichlet boundary condition

given: values on the boundary of a region Ω

+1

0

-1

∂Ω

g(x) u(x)

Ω

u = g on ∂Ωfind: smooth interpolation into interior

65

Δu = 0 on Ω

Review: Laplacian

66

Δu =
n

∑
i=1

∂2

∂x2
i

u

Δu(x, y) =
∂2

∂x2
u(x, y) +

∂2

∂y2
u(x, y)

Δu = ∇ ⋅ ∇u = div ∘ grad u

coordinates.

differential operators.

u : ℝn → ℝ (twice differentiable)

Laplacian gives deviation from local average

More intuitively, can think of the
Laplacian of a function as difference
between value at a point , and the
average value over a small sphere (or
ball) around

u
x0

x0

Δu(x0) ∝ lim
ϵ→0

1
ϵ2 (1

|Sϵ(x0) | ∫Sϵ(x0)
u(x) dx − u(x0))

u(x0)u(x)

sphere

area

integral over

sphere

value at

center

67

Mean value property of harmonic functions

Q: Given this interpretation of the Laplacian, what can we say about the behavior of a
harmonic function (i.e. a function satisfying) ?
A: Value at center and average over a sphere are equal.

u Δu = 0

mean value property

u(x) =
1

|∂B(x) | ∫∂B(x)
u(y) dy ∂B(x)

u(x)

x

y

Not just an approximation,

holds exactly for any

 of any radiusB ⊂ Ω

Can we avoid finite-dimensional approximation
completely with Monte Carlo?

68

The mean value property can be evaluated using a basic
Monte Carlo estimator

yi ∼ 𝒰∂B(x)uniform distribution on sphere

Monte Carlo estimation of the mean value integral

u(x) =
1

|∂B(x) | ∫∂B(x)
u(y) dy

mean value property

yix

Δu = 0 on Ω
u = g on ∂Ω

̂u(x) =
1

|∂B(x) |
|∂B(x) |

n ∑
i=1

u(yi)

mean value estimator

̂u(x) =
1

|∂B∂B∂ (x) |
|∂B∂B∂ (x) |

n ∑
i=1

mean value estimator

̂u(x) =
1
n ∑

i=1

u(yi)

mean value estimator

69

In general, we don’t know the solution everywhere on a
the sphere so we recursively evaluate u

̂u(y1)x

Ω

Recursive Monte Carlo estimator

Δu = 0 on Ω
u = g on ∂Ω

u(x) =
1

|∂B(x) | ∫∂B(x)
u(y) dy

mean value property

̂u(x) =
1
n ∑

i=1

̂u(yi)

mean value estimator

̂u(y2)̂u(y3)yi ∼ 𝒰∂B(x)

70

Branching is not a feasible strategy since we’ll quickly
run out of memory trying to store intermediate state

Branching Monte Carlo estimator

Δu = 0 on Ω
u = g on ∂Ω

u(x) =
1

|∂B(x) | ∫∂B(x)
u(y) dy

mean value property

̂u(x) =
1
n ∑

i=1

̂u(yi)

mean value estimator 3 sample estimator leads to ~43 million estimators after 16 recursive steps

x

yi ∼ 𝒰∂B(x)

Ω
71

To avoid branching, we only evaluate a
single sample at each sphere

x1 x2x0
xk

∂Ωϵ

Walk on Spheres

u(x) =
1

|∂B(x) | ∫∂B(x)
u(y) dy

mean value property

̂u(xi) = {
̂u(xi+1) if xi+1 ∉ ∂Ωϵ

g(xi+1) otherwise

walk on spheres estimator

xi ∼ 𝒰∂B(x)

Δu = 0 on Ω
u = g on ∂Ω

u(xk) ≈ g(xk)

∂Ωϵ

A walk terminates once solution is approximated with boundary data.

u = 0 // solution estimate
for i=1,..,nWalks {
 x = x0 // start a new walk
 do {
 // move to random point on biggest empty sphere
 r = distance(x,!")
 x = randomSphere(x,r)
 } while(r > !) // close enough!
 u += g(closestPoint(x,!")) // sample boundary value
}
return u/nWalks // return average boundary value

Walk on Spheres algorithm

̂u(xi) = {
̂u(xi+1) if xi+1 ∉ ∂Ωϵ

g(xi+1) otherwise

walk on spheres estimator

Δu = 0 on Ω
u = g on ∂Ω

xi ∼ 𝒰∂B(x)
73

Recursive estimators

ray tracing walk on spheres [Muller 1956]

74

Recursive random walks for solving the Laplace equation Δu = 0

Warning about convergence

Q: Are Monte Carlo estimates of arbitrarily nested integrals well defined?

u(xk) =
1

|∂Bk | ∫∂Bk

u(xk+1) dxk+1

!!

I = ∫Ω
f(x) dx ̂In =

|Ω |
n

N

∑
i=1

f(Xi)

Earlier we showed that Monte Carlo estimators of integrals converge

u(x) = lim
k→∞ [

k

∏
i=0

1
|∂Bi |]∫∂B0

∫∂B1

. . ∫∂Bk

u(xi+1) dxk . . . dx2dx1

A: Need to make sure that the integral exists…

75

Convergence of WoS — integral viewpoint

Q: For a matrix how do we check whether exists?

A: Just check that cannot make any vector “bigger” at each step

A ∈ ℝn×n lim
k→∞

Akx

A

∥Ax∥ < ∥x∥ ∀x ∈ ℝn

matrix convergence

∥Lu(x)∥op < ∥u(x)∥op

linear operator convergence

∀u ∈ ℝn → ℝ

 Same approach for mean value integral, which uses an operator norm

∥u∥op := ∫∂Ω
|u(x) | dx

integral operator norm

76

∥Lu(x)∥op < ∥u(x)∥op ⟺ ∥L∥op < 1

convergence criteria

Non-convergence for mean value operator

∥L∥op < 1

Mean value integral is an “averaging operator” applied to the solution on the
boundary of the sphere

u(x)

Lu(x) :=
1

|∂B(x) | ∫∂B(x)
u(y) dy

∂Ωϵ

∂B(x)

∂Ω

x
∥L∥op =

1
|∂B(x) | ∫∂B(x)

dx = 1

77

∥Lu(x)∥op < ∥u(x)∥op ⟺ ∥L∥op < 1

convergence criteria

-shell to the rescueϵ

Lu(x) :=
1

|∂B(x) | ∫∂B(x)\∂Ωϵ

u(y) dy +
1

∂B(x) ∫∂B(x)∩∂Ωϵ

g(y) dy
1

|∂B∂B∂ (x) | ∫∂∫∂∫ B∂B∂ (x)\∂Ωϵ

u(y) dydyd

linear operator Lϵu constant term b

Integral operator for walk on spheres isn’t quite the “averaging operator”— also
accounts for the contribution from Dirichlet boundary from -shell

L
ϵ

Ωϵ

∂B(x)

∂Ω

x

∥Lϵ∥op =
1

|∂B(x) | ∫∂B(x)\Ωϵ

dx < 1

Lu(x) :=
1

|∂B(x) | ∫∂B(x)
u(y) dy

∂Ωϵ

∂B(x)

∂Ω

x
∥L∥op =

1
|∂B(x) | ∫∂B(x)

dx = 1

∥Lu(x)∥op < ∥u(x)∥op ⟺ ∥L∥op < 1

78

Stopping tolerance ε for Dirichlet boundary

Introduces minimal bias and has little impact on performance

79

Binder & Braverman, “The Rate of Convergence of the Walk on Spheres Algorithm” (2012)

Efficiency of Walk on Spheres

Theorem: If the domain boundary is smooth, or the domain is convex, then WoS reaches the boundary in steps, on average.

∂Ω
Ω

O(log 1/ϵ)

80

Discussion: Stochastic vs. Deterministic Methods
How much does it cost to capture fine-scale features, of size O(ε)?

Stochastic vs. Deterministic Methods

How much does it cost to capture fine-scale features, of size O(ϵ)

81

Discussion: Stochastic vs. Deterministic Methods
How much does it cost to capture fine-scale features, of size O(!)?

finite differences walk on spheres

!!

O(log 1/!)
steps

O(1/!d)
grid cells

walk on spheresfinite differences

Stochastic vs. Deterministic Methods

O(log(1/ϵ))

O(1/ϵ2)
O(1/ϵ3)

ϵ

82

Closest Point Queries

r
x

Q: How expensive is a single step of walk on spheres?

A: Depends on the cost of computing the distance to the closest point

83

Geometric queries in Monte Carlo methods

Ray Intersection Query Distance Query 84

rendering walk on spheres

Closest point queries

For query point , find closest point on domain boundary x x′ ∂Ω

Example. Line segment ()∂Ω = A

t := (x − p) ⋅ (q − p)/ |p − q |2

x′ =
p, t < 0
q, t > 0,
(1 − t)p + tq, otherwise

d(x, A) = |x − x′ |

85

Closest point queries

For query point , find closest point on domain boundary x x′ ∂Ω

Example. Line segment ()∂Ω = A

d(x, A) = |x − x′ |

Example. Two line segment ()∂Ω = A ∪ B

d(x, A ∪ B) = min(d(x, A), d(x, B))

86

Closest point queries

For query point , find closest point on domain boundary x x′ ∂Ω

Example. Line segment ()∂Ω = A

d(x, A) = |x − x′ |

Example. Two line segment ()∂Ω = A ∪ B

d(x, A ∪ B) = min(d(x, A), d(x, B))

Example. Large number of line segments

Build bounding volume hierarchy (BVH)
amortized cost of query is O(log n)

87

Benefits of Monte Carlo — Lightweight data-structure

88

input
boundary mesh

FEM mesh (FastTetWild)
1 hour 25 minutes

build BVH for WoS
few milliseconds

Geometric generality

harmonic

Walk on spheres works any geometry that supports empty sphere queries, for example:

signed distance neural

implicit

mesh

explicit

harmonic

Walk on spheres works any geometry that supports empty sphere queries, for example:

signed distance neural

implicit

mesh

explicit

signed distancemesh signed distancemesh harmonicsigned distance neural harmonicsigned distance neural

89

Benefits of Monte Carlo Methods

90

Monte Carlo PDE solvers provides many of the same benefits:

Geometric
Flexibility
Geometric
Flexibility RobustnessRobustness ScalabilityScalability ParallelismParallelism

CorrectnessCorrectness Progressive
Preview

Progressive
Preview CompatibilityCompatibilityOutput

Sensitivity
Output

Sensitivity

Benefits of Monte Carlo — Correctness

91

[Wann Jensen 1995] [Sawhney & Crane 2020]

Rendering PDEs

Key idea: as long as equation is well-posed, numerical solution will be correct

Benefits of Monte Carlo — Scalability

92

Rendering PDEs

Key idea: cost of geometric detail grows like O(n log n)

[Georgiev et al 2018]

1.2 billion triangles1.2 billion triangles
[Sawhney, Seyb, Jarosz, Crane 2022]

> 1 billion boundary elements> 1 billion boundary elements

Benefits of Monte Carlo — Parallelism

93

Rendering PDEs

Key idea: just run on processors, take average of final estimatesN N

Benefits of Monte Carlo — Progressive

94

Rendering PDEs

Key idea: fast-but-reliable “preview” enables instant exploration

Credit: Ricky Reusser

Benefits of Monte Carlo — Geometric Generality

95

Rendering PDEs

Key idea: can work directly with heterogeneous geometry, without conversion

[Sawhney & Crane 2020]

Benefits of Monte Carlo — Robustness

96

Rendering PDEs

Key idea: solution quality degrades gracefully

[Sawhney & Crane 2020]

History of grid-free methods

97

• Theory & Algorithms
– Brownian motion related to heat & Laplace equations [Einstein 1905]
– walk on spheres [Muller 1956]
– a.k.a. floating random walk [Haji-Sheikh & Sparrow 1966]
– complexity analysis [Binder & Braverman 2012]
– extensions (Simonov, Sabelfeld, Mascagni, Deaconu, Booth, …)

• Applications
– integrated circuit design [Coz & Iverson 1992]
– porous media [Hwang et al 2000]
– molecular dynamics [Mascagni & Simonov 2004]
– …not much else!

9797

Mervin Muller

floating random walk [Haji-Sheikh & Sparrow 1966]
[Binder & Braverman 2012]

(Simonov, Sabelfeld, Mascagni, Deaconu, Booth, …)

integrated circuit design [Coz & Iverson 1992]
[Hwang et al 2000]

[Mascagni & Simonov 2004]

Mervin MullerMervin Muller

Main challenge: so far, applies to a limited class of PDEs!

98

PART 3:
WoS for Poisson Equation

Motivation for source terms

thermal analysis of PCBs thermal management in building design

99

Roadmap for solving Poisson PDE

Walk on Spheres+
Monte Carlo estimator

̂u(xi) = { ̂u(xi+1) + |B(xi) |G(xi, xi+1)f(xi+1)
g(xi+1

x1 x2x0
xk

∂Ωϵ

z0

z1
z2g(x)

Poisson PDE
differential form

Δu = f on Ω
u = g on ∂Ω

Find such thatu

f(x)

u(x)

Green’s integral
integral representation

∫B(x)
G(x, z)f(z) dz

100

Dirichlet boundary condition

Δu = 0 on Ω
u = g on ∂Ω

g(x)

Intuition: temperature prescribed on the boundary

Ω

u(x)

Poisson equation

Δu = f on Ω
u = g on ∂Ω

f(x)

Ω

Intuition: adds additional background temperature

u(x)

Green’s function

ΔG(x, z) = δz(x)
heat injected at single point

G2D(x, z) =
−ln(|x − z |)

2π

G3D(x, z) =
1

4π |z − x |

G(x, z) δz(x)

free-space Green’s function

103

Green’s function

GB(x, z) = 0 on ∂B

G2D
B (x, z) =

1
2π

ln (R2 − ⟨x, z⟩
R |z − x |)

G3D
B (x, z) =

1
4π (1

4 |x − z |
−

R
R2 − ⟨x, z⟩)

ΔGB(x, z) = δz(x) on B

δz(x)GB(x, z)

Green’s function on a ball zero temperature at boundary

104

Sources are additive

w(x) = 0 on ∂B
Δw(x) = δz1

(x) + δz2
(x) on B

δz1(x) + δz2(x)w(x)

w(x) = GB(x, z1) + GB(x, z2)

Sources are additive, so we can sum together
the Green's function to model multiple Dirac
deltas

105

Green’s integral on a ball

w(x) = 0 on ∂B
Δw(x) = f(x) on B

f(z)w(x)
Green’s integral

w(x) = ∫B
GB(x, z)f(z) dz

By convolving the Green’s integral with a source
term we obtain the source contribution over the
ball.

106

Generalized mean value integral

x
sourceboundary

Δu = f on Ω
u = g on ∂Ω

The mean value integral is generalized by considering the
source contribution within the ball centered at x.

generalized mean value integral

z

y

u(x) =
1

|∂B(x) | ∫∂B(x)
u(y) dy + ∫B(x)

G(x, z)f(z) dz

̂u(xi) = u(y) + |B(x) |G(x, z)f(z)

generalized mean value estimator

y ∼ 𝒰∂B(x) z ∼ 𝒰B(x)

107

xi+1 ∼ 𝒰∂B(x) zi ∼ 𝒰B(xi)

x1 x2

xk

∂Ωϵ

Walk on spheres with source term

The mean value integral can be generalized using the
Green’s integral to accounts for source terms

x0

Δu = f on Ω
u = g on ∂Ω

z0

z1
z2

walk on spheres estimator

̂u(xi) = {
̂u(xi+1) + |B(xi) |G(xi, zi)f(zi) if xi+1 ∉ ∂Ωϵ

g(xi+1) otherwise

generalized mean value integral

sourceboundary

u(x) =
1

|∂B(x) | ∫∂B(x)
u(y) dy + ∫B(x)

G(x, z)f(z) dz

108

Walk on spheres with source term

Δu = f on Ω
u = g on ∂Ω

walk on spheres estimator

u = 0 // solution estimate
for i=1,..,nWalks {
 x = x0 // start a new walk
 do {
 // move to random point on biggest empty sphere
 r = distance(x,!")

 x = randomSphere(x,r)
 } while(r > !) // close enough!
 u += g(closestPoint(x,!")) // sample boundary value
}
return u/nWalks // return average boundary value

z = randomBall(x,r) // random point inside
 u += *r*r*G(x,z,r)*f(z) // source contribution π

̂u(xi) = {
̂u(xi+1) + |B(xi) |G(xi, zi)f(zi) if xi+1 ∉ ∂Ωϵ

g(xi+1) otherwise

109

Green’s function G(x, z) source function f(z)uniform samples

Uniform sampling limitations

I = ∫B(x)
G(x, z)f(z) dz ̂Iuniform =

|B(x) |
n

n

∑
i=1

G(x, zi)f(zi)

Observation: most uniform samples don’t contribute much…

Importance sampling to the rescue

Idea: concentrate samples where the integrand is large

f(x)

x

don’t want to waste time on points
that contribute little to integral

corrects for under / over
sampling of uniform distribution

̂IImportance =
1
n

n

∑
i=1

f(Xi)
p(Xi)

draw more samples
where p is large

Xi ∼ pI = ∫
b

a
f(x) dx

111

Sampling distributions: uniform vs Green’s function

importance samples Green’s function G(x, z)

uniform samples Green’s function G(x, z)

key: importance sampling improves efficiency

Variance of basic Monte Carlo estimator

V [̂Iimportance(x)] = V [1
n

n

∑
i=1

G(x, Zi)f(Zi)
p(Zi)] definition of ̂Iimportance

=
1
n2

V [
n

∑
i=1

G(x, Zi)f(Zi)
p(Zi)] homogeneity V[aX] = a2V[X]

=
1
n2

n

∑
i=1

V [G(x, Zi)f(Zi)
p(Zi)] independence of Zi

=
1
n

V [G(x, Z)f(Z)
p(Z)]

How do we quantify a “better” sampling PDF ?p(z)

identically distributed

V[X] = E[(X − E[X])2]

variance

identically distributed
Lowest variance achieved by making

p(z) ∝ G(x, z)f(z)
113

Walk on spheres with and without importance sampling

uniform sampling importance sampling Green’s function

114

Walk on spheres with and without importance sampling

uniform sampling importance sampling Green’s function

Walk on spheres with and without importance sampling

uniform sampling importance sampling Green’s function

Importance sampling additional terms

uniform samples source samples f(z)

117

How do we actually sample points?

rejection sampling

Sample from a known distribution,
 throw out samples proportionally

to target function.

warping samples

Sample from a known distribution,
warp samples to target.

(e.g. inverse CDF transform)

T

118

Combining sampling strategies
• In practice, may have more than one importance sampling strategy that seems
promising. Which one should you use?

• Metaphor: Suppose I'm a soccer goalie, and know my opponent will either shoot
left or shoot right—but no great way to predict which one

•Want “robust” strategy that works well no matter what happens

left strategy right strategyright strategymixture strategy

multiple importance sampling provides principled approach to mixture distributions

120

PART 4:
WoS for Neumann Boundary Conditions

WoS solves PDEs with Dirichlet boundary conditions

121

Δu = 0 on Ω
u = g on ∂ΩD

Laplace eq.
Dirichlet condition

Prescribe given values
u = g on ∂ΩD

What about Neumann boundary conditions?

Δu = 0 on Ω
u = g on ∂ΩD

Neumann condition
∂u
∂n

= h on ∂ΩN

Prescribe given derivatives
∂u/∂n = h on ∂ΩN

Prescribe given values
u = g on ∂ΩD

Laplace eq.
Dirichlet condition

122

What about Neumann boundary conditions?

Δu = 0 on Ω
u = g on ∂ΩD

∂u
∂n

= h on ∂ΩN

Fluid mechanics:
velocity/pressure gradient

Structural analysis:
surface traction

Thermodynamics:
heat flux

∂u
∂n

= 000

u = 1

u = − 1

123

?
Neumann condition

Laplace eq.
Dirichlet condition

What about Neumann boundary conditions?

Observation: function extrapolated with slope will mirror values across h ∂ΩN

∂ΩN
slope

∂u
∂n = h

124

Naïve attempt at reflected random walks

125

Problem: inefficient

!

Problem: incorrect/biased

Idea: sample biggest sphere around crossing one edge & reflect if necessaryx

Naïve attempt at reflected random walks

126

du(x)
dn

≈
u(x + ζn) − u(x)

ζ

Idea: push walk into the domain by fixed distance [Mascagni & Simonov, 2004]

Mean Value Property

127

u(x)
A harmonic function satisfies:u

u(x) =
1

|∂B(x) | ∫∂B(x)
u(y) dy

Boundary Integral Equation

In general, a harmonic function on domain also satisfies:u Ω

u(x) = ∫∂Ω
P(x, y) u(y) − G(x, y)

∂u
∂ny

dy

128

∂u
∂nynyn

u(y) G(x, y)

P(x, y) :=u = g on ∂ΩD

Dirichlet Neumann

∂u
∂n

= h on ∂ΩN

a.k.a. Green’s
representation

theorem
P(x, y)

∂G
∂ny

(x, y)

Poisson kernel Greens fn

Boundary Integral Equation — derivation

129

Step 1: Start with Laplace equation , and multiply both sides by :Δu = 0 G

Step 2: Apply integration by parts:

∫Ω
G(x, y) Δu dy = 0

∫Ω
∇ ⋅ (G(x, y) ∇u) dy − ∫Ω

∇G(x, y) ⋅ ∇u(y) = 0

∫∂Ω
G(x, y)

∂u
∂ny

dy − ∫Ω
∇G(x, y) ⋅ ∇u(y) = 0

Step 3: Apply divergence theorem to the first term:

∫Ω
∇ ⋅ V = ∫∂Ω

n ⋅ V

Boundary Integral Equation — derivation

130

∫Ω
ΔG(x, y) u(y) dy = ∫∂Ω

P(x, y) u(y) − G(x, y)
∂u
∂ny

dy

u(x) = ∫∂Ω
P(x, y) u(y) − G(x, y)

∂u
∂ny

dy

Step 3: Apply divergence theorem to the first term:

∫∂Ω
G(x, y)

∂u
∂ny

dy − ∫Ω
∇G(x, y) ⋅ ∇u(y) = 0

Step 4: Apply integration by parts again to the second term

Step 6: By definition, and we getΔG(x, y) = δx(y)

∫Ω
∇ ⋅ V = ∫∂Ω

n ⋅ V

Boundary Integral Equation

131

For a Poisson equation , we can express solution as:Δu = f

— not known on u ∂ΩN

Problems:

u(x) = ∫∂Ω
P(x, y) u(y) dy

−∫∂Ω
G(x, y)

∂u
∂ny

dy

+∫Ω
G(x, y) f(y) dy

u(y)

∂u
∂nynyn

f(f(f y)

P(x, y)

G(x, y)

G(x, y)

Poisson kernel

Greens fn

Dirichlet values

Neumann values

source term

Can we now apply Monte Carlo
directly to this BIE?

— not known on
∂u
∂n

∂ΩD

!"#"$%"

— do not have random walk procedure

— never known for arbitrary P & G Ω

Poisson kernel & Green’s function

132

!"#$"
!"#$"

!"#"$%"

Mean value property is a special case of BIE

133

For a Poisson equation , we can express solution as:Δu = f

u(x) = ∫∂Ω
P(x, y) u(y) dy

−∫∂Ω
G(x, y)

∂u
∂ny

dy

+∫Ω
G(x, y) f(y) dy

u(y)

f(f(f y)

P(x, y)

G(x, y)

⟹ G(x, y) = 0 on ∂B

Let Ω = B ⟹ P(x, y) =
1

|∂B |

mean value property⟹

−∫∂∫∂∫ Ω
dydyd

∂u
∂nynyn

G(x, y)

Boundary Integral Equation

134

Laplace equation (zero Neumann)

Δu = 0 on Ω
Laplace equation (zero Neumann)

Δu = 0 on Ω ! x
A∂A

134134
Intuition: “generalized mean value property”

u(x) = ∫∂A
P(x, y) u(y) dyu(y)

unknown
value at y

P(x, y)
Poisson kernel

of A

Walk on subdomains

135

Next idea: take a “walk” on subdomains that contain the
Neumann boundary (by sampling Poisson kernel)

reflection!

Boundary Integral Equation (General)

136136

u(x) = ∫∂A
PC(x, y) u(y) dy∫∂∫∂∫ A∂A∂ integrate over boundary of (not)A C

PC(x, y)
Poisson kernel

of (not)C A

Boundary Integral Equation (General)

!
C A !A

Laplace equation (zero Neumann)

Δu = 0 on Ω

Choice of region C

137

!

!

ballC =

Poisson kernel for a ball

138

!

!

!
!

Signed solid angle

139

!!!"" #

!

M

Poisson kernel/solid angle is the kernel
of the winding number integral:

Jacobson et al, Generalized winding number (2013)

Signed solid angle

140

!!!"" #

!

M

Poisson kernel/solid angle is the kernel
of the winding number integral:

odd #hits inside⟹

even #hits outside⟹

Sampling signed solid angle in photorealistic rendering

141

Lo(x) = ∫Ω
ρ(x, y) Li(y) V(x, y)

ny ⋅ ̂y − x
4πr2

dA sample by tracing ray &
returning first (visible) hit!

y

brdf radiance visibility

ρ(x, y) LiLiL (y) V(V(V x, y)
nynyn ⋅ ̂y − x

4πr2

geometry

BIE has no
visibility term !V

No problem, just shoot a ray
in a random direction to
sample from solid angle

Boundary Integral Equation (General)

142142

u(x) = ∫∂A
PC(x, y) u(y) dy∫∂∫∂∫ A∂A∂ integrate over boundary of (not)A C

PC(x, y)
Poisson kernel

of (not)C A

Boundary Integral Equation (General)

!
C A !A

Laplace equation (zero Neumann)

Δu = 0 on Ω

Choice of region A

143

input domainA =

x

Multiple intersections exponential growth in points to track⟹

Star-shaped region

144

 = star-shaped region, = ballA C

Sampling signed solid angle in BIE

145

Just shoot a ray in a random direction

first hit: ball first hit: domain boundary

Walk on stars [Sawhney*, Miller*, Gkioulekas!, Crane!, 2023]

146

Δu = 0 on Ω
u = g on ∂ΩD

Neumann
∂u
∂n

= 0 on ∂ΩN

until we reach Dirichlet boundary :
• find star-shaped region around
• sample from

add boundary value to average
(repeat N times)

∂ΩD

St xk

xk+1 ∂St
g(xk)

Laplace eq.
Dirichlet

146
Key difference: walk can now reflect off Neumann boundary

Finding star-shaped regions

147

How do we find big star-shaped regions?

AA B

Finding star-shaped regions

148

How do we find big star-shaped regions?

B
closest point

closest silhouette point

Take minimum distance to:
(i) Dirichlet boundary
(ii) silhouette of Neumann boundary

149

!"#$
%&'#

'&()*+,%&'#

-.#(/,
0&"'1

2345
'&6#

!"#$
%&'#

2345
'&6#

normal cone hierarchy

[Johnson & Cohen 2001][Johnson & Cohen 2001][Johnson & Cohen 2001]

Can re-use same BVH built for ray intersections and closest point queries.

!

!
!

query
point

silhouette
points

Closest silhouette point queries

Stopping tolerance ! for Neumann & Robin boundaries

150

Star radius shrinks near concave parts of the Neumann boundary

Stopping tolerance ! for Neumann & Robin boundaries

151

Minimum radius parameter has a performance vs bias tradeoffε

Star radius shrinks near concave parts of the Neumann boundary

near
Dirichlet

boundary?

add boundary
value to total

YES

find closest
point & closest
silhouette point

NO shoot ray at star-
shaped region to

get next point

(repeat N times, return average value)

Walk on stars (Laplace, Dirichlet, zero-Neumann)

152

Walk on stars

153

Automatically becomes WoS when there is no Neumann boundary

mixed reflecting/absorbing pure Dirichlet (absorbing)

PDE solver in 150 lines of code

154

standard C++ (no external dependencies)

https://geometry.cs.cmu.edu/stars

Reference implementation

155

Additional features — non-zero Neumann conditions

156

Δu = 0 on Ω

∂u
∂n

= h on ∂ΩN

u = g on ∂ΩD

h

walk picks up contribution
with every reflection on

Neumann boundary

Additional features — pure Neumann problems

157

Δu = 0 on Ω

∂u
∂n

= h on ∂ΩN

u = g on ∂ΩD

h

walk continues forever…
 use Tikhonov regularization

to terminate walks!

Additional features — Open domains & double-sided conditions

158
 — collection of open & closed curvesΓ

Δu = 0 on Ω∖Γ
u = g+ on Γ+

u = g− on Γ−

Oxygen diffusion — walk on stars

159

Oxygen diffusion — FEM

25.1 hours
to generate

“sim-ready” mesh

160

11 minutes
broken

geometry

25.1 hours
to generate

“sim-ready” mesh

11 minutes
broken

geometry
Takeaway: Doesn’t matter how fast/accurate your FEM
solver is if mesh generation is slow or unreliable.

161161

“The heat equation helps to answer a question: is it done yet?
Or rather, it could, if only the complexity of food did not defy our
ability to model it mathematically. … It would take extraordinary
effort to represent such intricate, highly-variable patterns in a
heat-transfer model.”

—Myhrvold & Migoya, “Modernist Bread”

Thermal transfer

preview
(faster than a real toaster!)

Thermal transfer on a detailed CT scan (4 million triangles)

162

Thermal transfer

164

boundary conditions evaluated “on demand”

Takeaway: Easy to mix & match not only
geometric representations, but also algorithms.

Thermal transfer

Walk on boundary [Sabelfeld & Simonov 2013]

165

input domainA = Euclidean spaceC =

x

Multiple intersections exponential variance⟹

!"#$ &'
()"*(

!"#$%#$&'$()*+,!"#$%-./"#.*+,

!"#$ &'
+&,'-"*.

[Sabelfeld & Simonov 2013]
[Sugimoto et al 2023]

Comparison to walk on boundary

166

167

star-shaped regionA = ballC =

x

What other subdomains can we use?

!

x

Takeaway: Often not sufficient to throw the MC
hammer at integration problems.

Geometric insights are critical for designing
stable and efficient MC estimators.

Walk on stars

Sampling signed solid angle in photorealistic rendering

168

Lo(x) = ∫Ω
ρ(x, y) Li(y) V(x, y)

ny ⋅ ̂y − x
4πr2

dA

brdf radiance visibility

ρ(x, y) LiLiL (y) V(V(V x, y)
nynyn ⋅ ̂y − x

4πr2

geometry

Critical to importance sample

both and V
ny ⋅ ̂y − x

4πr2

sample by tracing ray &
returning first (visible) hit!

y

Long walk lengths

169

Reflecting

Absorbing

WoSt Avg # Steps: 219Ray Tracing Avg # Steps: 240

walk origin
termination

Reflecting

Absorbing

Always possible to build more efficient
Monte Carlo estimators!

170

PART 5:
WoS as Simulation of Brownian Motion

171

A tale of three types of equations…

Kakutani’s Principle

172

u(x) = 𝔼[g(WT)]
x

Δu = 0 on Ω
u = g on ∂ΩD

Solution to Laplace eq can be computed by simulating Brownian motion

≈
1
N

N

∑
i=1

g(Wi
T)

Brownian motion

173

Collection of independent normally-distributed incrementsCollection of independent normally-distributed increments

Wt2 − Wt1 ∼ 𝒩(0, Δt)

Brownian motion

174

Collection of independent normally-distributed increments

decreasing Δt

“ ”dWt

History of Brownian motion

175

Robert Brown (botanist)
studied erratic movement of pollen
in water under a microscope (1827)

Albert Einstein (physicist)
related density of Brownian particles
to solution of a heat equation (1905)

Nobert Wiener (mathematician)
rigorous mathematical theory of Brownian motion as continuous,
non-differentiable paths (Wiener process, 1923)

Universality of Brownian motion

176

Even though random processes in nature, science, technology have
very different origins, their aggregate behavior is well-predicted by BM

thermal fluctuations reaction diffusion optimal control market volatility

Universality of Brownian motion

177

Even though random processes in nature, science, technology have
very different origins, their aggregate behavior is well-predicted by BM

diffusion models in machine learning [Heitz et al, SIGGRAPH 2023]

Simulation of Brownian motion via Euler Muruyama

178

Collection of independent normally-distributed increments

Wt2 − Wt1 ∼ 𝒩(0, Δt)

Collection of independent normally-distributed incrementsCollection of independent normally-distributed increments

WtWtW
2t2t − WtWtW

1
∼ 𝒩(0, Δt)Wt2 ≈ Wt1 + ξΔt, ξ ∼ 𝒩(0, 1)

Numerical challenges in bounded domains

179

small time steps accurate results, long compute timesΔt →

large time steps shorter compute times, large bias (error)Δt →

 too smallΔt too bigΔt just right?
(still biased)
Δt

ξΔt

truncate final step walks can jump
across domains

Simulation of Brownian motion via Walk on Spheres

180

u(x) = 𝔼[g(Wτ)]

Δu = 0 on Ω
u = g on ∂ΩD

Solution to Laplace eq can be computed by simulating Brownian motion

≈
1
N

N

∑
i=1

g(Wi
τ)

x

∂B(xk)

x

Brownian motion has a uniform exit distribution
for a sphere of any size

Kakutani’s Principle on a ball

181

Kakutani’s Principle on a ballKakutani’s Principle on a ball

differential equation
(Laplace)

Time to reach boundaryT →

1
|∂B(x) | ∫∂B

u(y) dyΔu = 0 on Ω
u = g on ∂Ω

𝔼 [g(WT) W0 = x]
Kakutani’s Principle

(any domain)
mean value property

(on ball)

∂B(xk)

xx

WoS provides
unbiased acceleration

of Brownian motion
in bounded domains!

Stochastic representation for source term

182

Stochastic representation for source termStochastic representation for source termStochastic representation for source term

differential equation
(Poisson)

Harmonic Green’s Function G(x, y)

Time to reach boundaryT →
∫B(x)

f(y) G(x, y) dyΔu = f on Ω
u = 0 on ∂Ω

𝔼 [∫
T

0
f(Wt) dt W0 = x]

stochastic representation
(any domain)

integral representation
(source term on ball)

f

Deriving PDE estimators for Walk on Spheres

183

STOCHASTIC
REPRESENTATION

e.g., Kakutani’s Principle

INTEGRAL
REPRESENTATION
e.g., mean value property

DIFFERENTIAL
EQUATION

MONTE CARLO
ESTIMATOR

recursively
apply Monte Carlo

integration

assume
domain
is a ball

write deterministic
equation in terms of

random process

Robin conditions
variable coefficients
derivative estimators
variance reduction

…

Walk on stars simulates Reflected Brownian motion

184

Δu = 0 on Ω

∂u
∂n

= h on ∂ΩN

u = g on ∂ΩD

Walk on stars handles Neumann conditions by
reflecting random walks on the boundary

Absorbed vs Reflected Brownian motion

185

Neumann ↔ reflectedDirichlet ↔ absorbed

Reflected Brownian motion — 1D

186

Xt := |Wt |

Reflected Brownian motion — nD / polyhedral

187

RBM simulation via Euler Muruyama

188

Numerical integration of Brownian motion is slow and biased

Wt2 ≈ Wt1 + ξΔt
ξ ∼ 𝒩(0, 1)

Wt2 ← proj∂Ω(Wt2)

Comparison to alternatives: SDE integration

189

Numerical integration of Brownian motion is slow and biased

190

Robin boundary conditions

Δu = f on Ω

∂u
∂n

= h on ∂ΩN

u = g on ∂ΩD

∂u
∂n

− μu = k on ∂ΩR

∂ΩD

∂ΩR

Ω

x0

x1

Walk on stars also handles Robin conditions
[Miller*, Sawhney*, Crane!, Gkioulekas!, 2024]

191

Robin boundary conditions

Linearly interpolate between Neumann and Dirichlet conditions

Neumann
(purely reflecting)

Robin
(more reflecting)

Robin
(more absorbing)

Dirichlet
(purely absorbing)

More accurate physical model

193

Partially reflected Brownian motion

Non-zero probability of absorption on the boundary

x0

Ω

∂ΩR

 Robin
(partially reflecting and absorbing)

random walk
absorbed on

Robin boundary

Walk on stars with Robin boundary conditions

194

random walk
terminated on

Robin boundary

Non-zero probability of absorption on the boundary

Radius of a star-shaped region with Robin conditions

195

Robin
(more reflecting)

Robin
(more absorbing)

Dirichlet
(purely absorbing)

Neumann
(purely reflecting)

Reflectance function on Robin boundary

196

Reflectance is bounded between 0 and 1 with correct choice of radius ρμ

ρμ ∈ [0, 1]
∂Ω

D

∂Ω
R

xk

R

ρμ ∈ [0,1]
ρμ ∉ [0,1]

 Naive estimator
 = distance to
 (multiple intersections)

R
 WoSt for Neumann
= distance to silhoue!e
 (single intersections)

 WoSt for Robin ()
 chosen s.t.

197

A tale of three types of equations…

Real systems exhibit spatial variation

198

varying electrical conductivity
varying thermal diffusivity

varying permeability
of porous media

varying elastic response

Laplace equation

199
Intuition: temperature along boundary is fixed

Δu = 0boundary
values g(x)

Δ :=
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

Poisson equation

200
Intuition: adds additional “background temperature”

Δu = fsource
term f(x)

Variable diffusion Poisson equation

201
Intuition: how fast does heat “spread out”?

diffusion
coefficient α(x)

∇ ⋅ (α∇u) u = f

Stationary advection-diffusion equation

202
Intuition: heat is dragged along with a flowing river

transport
coefficient ⃗ω (x)

Δu + ⃗ω ⋅ ∇u = f

Screened Poisson equation

203
Intuition: “cooling” due to absorption into background medium

absorption
coefficient σ(x)

Δu − σu = f

204

2nd order linear elliptic PDEs

In general, mean value integrals are not available
for PDEs with variable coefficients

205

Stochastic differential equations (SDEs)

206

Stochastic differential equations (SDEs)

207

Stochastic differential equations (SDEs)

208

Stochastic differential equations (SDEs)

209

Stochastic differential equations (SDEs)

Brownian motion
with variable diffusion α(x)

Brownian motion
with drift ⃗ω (x)

Brownian motion
with absorption σ(x)

dXt = ω(Xt) dt + α(Xt) dWt

u(x) = 𝔼 [∫
τ

0
e− ∫t

0 σ(Xs) ds f(Xt) dt + e− ∫τ
0 σ(Xt) dt g(Xτ)]

Stochastic representation for variable coefficient PDEs

210

Feynman Kac formula

Diffusion process

α(XtXtX)

σ(XtXtX)

ω(XtXtX)

σ(XsXsX) f(f(f XtXtX) (XτXτX)

drift diffusion

absorptionabsorption

211

Walk on Spheres for PDEs with source terms

E.g., ; sample the spatially-varying source inside each ballΔu = f(x) f

Transformations to PDE [Sawhney*, Seyb*, Jarosz✝, Crane✝]

212

Variable coefficient

Constant coefficient

∇ ⋅ (α∇u) + ⃗ω ⋅ ∇u − σ u = f

Δu − σ̄ u = f(x, α, ⃗ω , σ, u)

∫B(x)
f(y, α, ⃗ω , σ, u) Gσ̄(x, y) dy + ∫∂B(x)

u(z) Pσ̄(x, z) dzIntegral

(No approximation!)

recursive

constant

Girsanov & delta tracking
transformations

dXt = ω(Xt) dt + α(Xt) dWt dXt = dWt

Re-express Feynman Kac in terms of Brownian motion

Transformations to Feynman—Kac

213

u(x) = 𝔼 [∫
τ

0
e− ∫t

0 σ(Xs) ds f(Xt) dt + e− ∫τ
0 σ(Xt) dt g(Xτ)]

Volume Rendering Equation (VRE)

VRE describes the radiance in heterogeneous absorbing & scattering media

L(w, ω) = ∫
d

0
e− ∫t

0 σ(xs) ds f(xt, ω) dt + e− ∫d
0 σ(xt) dt g(xd, ω)

214

Structural connection between VRE & Feynman—Kac

VRE gives radiance in heterogeneous
absorbing & scattering media

Feynman—Kac for 2nd order
variable coefficient PDEs

u(x) = 𝔼 [∫
τ

0
e− ∫t

0 σ(Ws) ds f(Wt) dt + e− ∫τ
0 σ(Wt) dt g(Wτ)]L(w, ω) = ∫

d

0
e− ∫t

0 σ(xs) ds f(xt, ω) dt + e− ∫d
0 σ(xt) dt g(xd, ω)

215

DELTA TRACKING (RENDERING)

!"#$$%&'()*%+%($

(,--
*%+%

($!

[Woodcock et al 1965; Raab et al 2008]
DELTA TRACKING (WOS)

null event

[Sawhney*, Seyb*, Jarosz!, Crane!]

Take inspiration from Volume Rendering

[Hofmann et al, 2021]

To solve PDEs with variable material coefficients

217

218

No model cleanup, reduction or homogenization!

219219

input mesh
(used directly by WoS)

FEM mesh
(~700k tetrahedra)

adaptive FEM mesh
(8.5 million tetrahedra)

WoS — 10 minutes FEM — 1.5 hours FEM+AMR — 2.5 hours

Adaptive Mesh Refinement (AMR)

Comparison with conventional solvers

Boundary element method does not require a volume mesh

To handle source terms or variable coefficients, must integrate with FEM

BEM solution

FEM solution

WoS solution

Boundary data

Source function

Di!usion coe!

BEM solution

FEM solution

WoS solution

Boundary data

Source function

Di!usion coe!

220

Comparison with conventional solvers

Tessellation independent as boundary samples are generated randomly

B
EM

bo
un

da
ry

ca
ch

in
g

Input boundary conditions Input boundary mesh

Dirichlet
Neumann

B
EM

bo
un

da
ry

ca
ch

in
g

Input y conditions

0
1-1

Input y mesh

Singular matrix
Non-invertible system

221

Today, walk on spheres can solve…

222

Δu = 0

Δu = f

∇ ⋅ (α∇u) + ⃗ω ⋅ ∇u − σu = f

Laplace equation

Poisson equation

Elliptic equations

walk on spheres walk on stars

walk on spheres (delta-tracking)

223[animation credit: Keenan Crane]

Boundary Integral Equation

224

For a Poisson equation , we can express solution as:Δu = f

u(x) = ∫∂Ω
P(x, y) u(y) dy

−∫∂Ω
G(x, y)

∂u
∂ny

dy

+∫Ω
G(x, y) f(y) dy

u(y)

∂u
∂nynyn

f(f(f y)

P(x, y)

G(x, y)

G(x, y)

BIEs also known for:
— Heat eq
— Helmholtz eq
— Wave eq
— Biharmonic eq
— Linear elasticity
— …

225

PART 6:
Variance Reduction

Efficiency of Monte Carlo

226

Squared error of Monte Carlo estimator is given by:

V[f]
N

V[f]
N

variance of the integrand

number of samples

To do better, make at least one of these factors smaller:

— less error for equal time (), e.g., importance samplingV[f]

— more samples per second (), e.g., parallelism, GPUs, caching1/N

∂ΩN

∂ΩD

Ω

walk on stars

Solution evaluated independently at very point — parallelism

Noisy streamlines!

walk on stars

∂ΩN

∂ΩD

Ω

wind tunnelwind tunnel

Solution evaluated independently at very point — redundancy

∂ΩN

∂ΩD

Ω
boundary sample

 shared walk [Miller*, Sawhney*, Crane!, Gkioulekas!, 2023]

boundary value caching

boundary value caching walk on stars

231

Robustly handle meshes intended for visualization

Sample reuse in Monte Carlo Ray Tracing

232

Virtual Point Light Methods (VPLs)

Step 1: Deposit radiance estimates Step 2: Reuse cached radiance estimates

Sample reuse for PDEs

233

Δu = 0 on Ω

∂u
∂n

= h on ∂ΩN

Laplace equation

u = g on ∂ΩD

x

Ω

Dirichlet Neumann

Boundary Integral Equation

234

u(x) = ∫∂Ω

∂G(x, y)
∂n

u(y) − G(x, y)
∂u(y)

∂n
dy

Δu = 0 on Ω

∂u
∂n

= h on ∂ΩN

u = g on ∂ΩD

G(x, y)
free-space

Green’s function∂G(x, y)
∂n

free-space Poisson kernel

x

Ω

!"#$"

Neumann

∂u(y)
∂n

Green’s functionDirichlet

u(y)

Monte Carlo estimator for BIE

235

Δu = 0 on Ω

∂u
∂n

= h on ∂ΩN

u = g on ∂ΩD
x

Ω

!"#$"

Monte Carlo estimator for BIE

Δu = 0 on Ω
!"#$"

̂u (x) =
|∂Ω |

N

N

∑
i=1

∂G(x, yi)
∂n

u(yi) − G(x, yi)
∂u(yi)

∂n

Monte Carlo estimator for BIE

236

Δu = 0 on Ω

∂u
∂n

= h on ∂ΩN

u = g on ∂ΩD
x

y

Ω

!"#$"

Monte Carlo estimator for BIE

Δu = 0 on Ω y !"#$"

u = g on ∂ΩD

known estimate

̂u (x) =
|∂Ω |

N

N

∑
i=1

∂G(x, yi)
∂n

g(yi) − G(x, yi)
∂ ̂u(yi)

∂n

Monte Carlo estimator for BIE

237

Δu = 0 on Ω

∂u
∂n

= h on ∂ΩN

u = g on ∂ΩD
xy

Ω

!"#$"

Monte Carlo estimator for BIE

Δu = 0 on Ω
!"#$"

∂u
∂n

= h on ∂ΩN

̂u (x) =
|∂Ω |

N

N

∑
i=1

∂G(x, yi)
∂n

u(yi) − G(x, yi) h(yi)u(yi) h(yi)

knownestimate

Monte Carlo estimator for BIE

238

Monte Carlo estimator for BIE

̂u (x) =
|∂Ω |

N

N

∑
i=1

∂G(x, yi)
∂n

̂u (yi) − G(x, yi)
∂ ̂u(yi)

∂n

x0

x1
x2

can reuse boundary estimates
at any point in domain

i.e., can estimate many integrals
with one set of estimates

Normal derivative estimation

239

∇xu(x) =
1

|B | ∫∂B
u(y) v(y) dy

Spatial derivative inside ball:

du(x)
dnx

= nx ⋅ ∇xu(x)

Normal derivative on boundary:

Dirichlet Dirichlet o!set boundaryNeumann

o!set regionsample reuse region ε-shell

[Sawhney & Crane 2020]

v(y)
normal

Boundary Value Caching (BVC)

240

generate samples
on boundary ∂Ω

use WoSt to
estimate & u

du
dn

evaluate BIE
inside domain Ω

xxxxxx

simple to implement

trivial to parallelize

progressive

Suppressed noise (due to correlation)

Improved run-time efficiency (sharing global information)

boundary value caching walk on stars

Benefits of BVC

241

Gradient estimates with BVC

242

Can reuse same boundary cache for gradients!

Source term

243

Generate cache samples for source values inside domain:
no random walks needed

f

Δu = f on Ω

Stratification

244

Output sensitivity with BVC

245

Can focus computation in local regions of interest

Error and convergence

246

reference

0 0.5

Neumann

Dirichlet

1000 samples100 samples10 samples10 samples 1000 samples100 samples100 samples100 samples10 samples

so
lu

tio
n

er
ro

r

0 0.1

more boundary samples

247

Decades worth of strategies can be applied to PDEs:

mathematical finance

stochastic control

rendering
Markov chain Monte Carlo

control variatesoptional samplingneural denoising

reinforcement learning

quasi Monte Carlo stratified sampling
low-discrepancy sampling

blue noise sampling
path guiding

Just the tip of the iceberg…

Importance sampling of Green’s function & source term

̂I =
1
N

N

∑
i=1

f(Xi) G(Xi)
p(Xi)

248

f(x)G(x doesn’t help much
to sample here…

p ∝ f

Sampling point, curve & area sourcesSamples drawn from Green’s function of ball

p ∝ G

Weight window for variable coefficient PDEs

249Sawhney et al., “Grid-free Monte Carlo for PDEs with spatially varying coefficients”, SIGGRAPH 2022

Probabilistically terminate low-contribution random walks to improve efficiency

Probabilistically split high-contribution random walks with for better exploration

Kelvin transform for exterior problems

250

exterior problem

Nabizadeh et al., “Kelvin Transformations for Simulations on Infinite Domains,” SIGGRAPH 2021

interior problem

Invert via
Kelvin transform

Kelvin transform for exterior problems

251
(electrostatic potential on 1CRN protein)

Application: force evaluation for molecular dynamics simulation

RUSSIAN
ROULETTE

KELVIN
TRANSFORM

Bidirectional walk on spheres

252

Key idea: start at source points, estimate Green’s function at sensor points

Qi, Seyb, Bitterli, Jarosz, “A Bidirectional Formulation for Walk on Spheres,” EGSR 2022

source terms bidirectional WoS

regular WoS

Sample reuse via Mean Value Caching

253Bakbouk & Peers, “Mean Value Caching for Walk on Spheres,” EGSR 2023

volumetric mean value property

u(x) =
1

|B(x) | ∫B(x)
u(y) dy

Neural Caches

254

Li, Yang, Deng, De Sa, Hariharan, Marschner,
“Neural Caches for Monte Carlo Partial Differential Equation Solver,” SIGGRAPH Asia 2023

Key idea: Terminate walks early by training network to predict solution

Long walk lengths

255

Reflecting

Absorbing

WoSt Avg # Steps: 219Ray Tracing Avg # Steps: 240

walk origin
termination

Reflecting

Absorbing

Takeaway: Variance reduction strategies targeting
complimentary aspects of an MC estimator can be
seamlessly combined.

256

PART6:
Evaluation, Recent & Future work

257

Summary

Presented emerging class of grid-free
MC methods for PDEs based on WoS

WoS reframes PDE as integration problem,
and uses random sampling

Not always the right tool for the job!

WoS inherits many advantages of Monte Carlo rendering
(scalable with geometric complexity, parallelism, output sensitive, …)

Monte Carlo is dumb, but it just works!

Traditional approach to PDE-based analysis

260

Monte Carlo approach to PDE-based analysis

261

Comparison with conventional solvers

262

!"#!"#!"#!"#

Finite Element RadiosityMonte Carlo Ray Tracing

263

https://www.cs.cmu.edu/afs/cs/project/classes-ph/860.96/pub/www/montecarlo.mail

From: cn1@irz301.inf.tu-dresden.de (Nguyen, D.C.)
Subject: What's wrong w/ Monte-Carlo methods?
To: globillum@imag.fr (Global Illumination List)
Date: Mon, 28 Oct 1996 15:50:34 +0200 (MESZ)

I often ask myself : Monte-Carlo ray-tracing, is this the way to do globillum in the
future? After reading a lot of papers aboud MC-methods, i still get confused w/ their
terminologies. I can't see any advantage of these methods over traditional methods
(radiosity), except the fact that meshing is not needed…

From: shirley@facility.cs.utah.eduSubject: Re: What's wrong w/ Monte-Carlo methods?To: cn1@irz301.inf.tu-dresden.de (Nguyen D.C.)Date: Mon, 28 Oct 1996 08:31:22 -0700 (MST)Cc: globillum@imag.fr, shirley@facility.cs.utah.edu (Peter Shirley)
…In summary, pure MCPT has only two advantages-- it is so dumb that it doesn't get hit by big scenes, and it is easy to implement.

https://www.cs.cmu.edu/afs/cs/project/classes-ph/860.96/pub/www/montecarlo.mail

http://www.incompleteideas.net/IncIdeas/BitterLesson.html

“One thing that should be learned from the bitter lesson is the great power of
general purpose methods, of methods that continue to scale with increased

computation even as the available computation becomes very great.”

http://www.incompleteideas.net/IncIdeas/BitterLesson.html

Monte Carlo Geometry Processing

266

Sawhney & Crane
SIGGRAPH 2020 Sawhney*, Seyb*,

Jarosz!, Crane!

SIGGRAPH 2022
Miller*, Sawhney*,

Crane!, Gkioulekas!
SIGGRAPH 2023

Sawhney*, Miller*,
Gkioulekas!, Crane!

SIGGRAPH 2023

Introduce WoS to graphics & generalize it to solve larger class of PDEs

Monte Carlo Geometry Processing

Sawhney & Crane
SIGGRAPH 2020

Introduce WoS to graphics & generalize it to solve larger class of PDEs

Sawhney*, Seyb*,
Jarosz!, Crane!

SIGGRAPH 2022

Introduce WoS to graphics & generalize it to solve larger class of PDEsIntroduce WoS to graphics & generalize it to solve larger class of PDEsIntroduce WoS to graphics & generalize it to solve larger class of PDEsIntroduce WoS to graphics & generalize it to solve larger class of PDEs

Sawhney*, Miller*,
Gkioulekas!, Crane!

SIGGRAPH 2023

Introduce WoS to graphics & generalize it to solve larger class of PDEsIntroduce WoS to graphics & generalize it to solve larger class of PDEs

Miller*, Sawhney*,
Crane!, Gkioulekas!

SIGGRAPH 2023
Miller*, Sawhney*,

Crane!, Gkioulekas!
SIGGRAPH 2024

266

Introduce WoS to graphics & generalize it to solve larger class of PDEsIntroduce WoS to graphics & generalize it to solve larger class of PDEs

Miller*, Sawhney*,
Crane!, Gkioulekas!

SIGGRAPH 2024
* and ! denote equal contribution

267

Rioux-Lavoie et al, “A Monte Carlo Method for Fluid Simulation” (SIGGRAPH Asia 2022)
Sugimoto et al, “Velocity based Monte Carlo Fluids” (SIGGRAPH 2024)
Jain et al, “Neural Monte Carlo Fluid Sim” (SIGGRAPH 2024)

Monte Carlo fluid simulation

268

Monte Carlo Infrared Imaging

WoS ↔ thermal conduction

Path tracing ↔ thermal radiation

“Coupling Conduction, Convection and Radiative Transfer in a Single Path-Space: Application to Infrared Rendering”
Bati, Blanco, Coustet, Eymet, Forest, Fournier, Gautrais, Mellado, Paulin, Piaud, SIGGRAPH 2023

Differentiable solvers for PDE-based shape optimization

Goal: recover shape given measurements, e.g., temperature, electric potential

269

270

Integrated Circuits Design

271

Agent path planning

Credit: Ryan Schmidt

272

Next Steps

— High-performance GPU implementation (coming soon!)
— Variance reduction: denoising & supersampling

Research Production →

“Real-world” applications
— exploit unique capabilities of Monte Carlo

Extend WoS to more physical problems
— Heat, Helmholtz & wave equations, anisotropic diffusion, linear elasticity
— Multi-physics: couple conduction, radiation, convection
— Differentiability

273

Resources for further learning

END.

Physically based rendering (PBRT)

Monte Carlo Methods and Applications (CMU)

Stochastic Differential Equations (Oksendal)

Rohan’s PhD Thesis

Slides are available online

https://pbrt.org
https://gi1242.codeberg.page/cmu-math-cs-mcm/
http://www.stat.ucla.edu/~ywu/research/documents/StochasticDifferentialEquations.pdf
http://rohansawhney.io/RohanSawhneyPhDThesis.pdf
https://github.com/rohan-sawhney/mcgp-resources/tree/main

274

BACKUP

Comparison with conventional solvers

Meshless FEM solvers also do not require a volume mesh

39

Typical FEM sparse matrix
(~25k vertices a er reordering)

Typical Meshless FEM sparse matrix
(~25k nodes a er reordering)

~5x more fill
relative to FEM

39

Typical FEM sparse matrix
(~25k vertices a er reordering)

Typical Meshless FEM sparse matrix
(~25k nodes a er reordering)

~5x more fill
relative to FEM

• Require dense sampling of
the entire domain

• Require solving large
linear systems

275

Meshless FEM is unreliable

Solvers have unpredictable convergence under refinement

WoS (delta tracking)

O(h)

O(h2)

~10,000x

~10,000x

O(h)

O(h2)

~100,000x

~100,000,000x

~1,000,0000x

~100,000,000,000,000x
Meshless FEM (Weighted Least Squares)

node spacing h node spacing h

Re
du

ct
io

n
in

 l2
 e

rr
or

Re
du

ct
io

n
in

 l2
 e

rr
or

O(h)

O(h2)

Meshless FEM (RBF-FD w. polynomial augmentation)

Mesh-based FEM

Re
du

ct
io

n
in

 l2
 e

rr
or

node spacing h # walks n

Re
du

ct
io

n
in

 R
M

SE

WoS (delta tracking)

Meshless FEM (Weighted Least Squares)

node spacing h node spacing h

Re
du

ct
io

n
in

 l2
 e

rr
or

Re
du

ct
io

n
in

 l2
 e

rr
or ~10,000x

~10,000x

O(h)

O(h2)

~100,000x

~100,000,000x

Meshless FEM (RBF-FD w. polynomial augmentation)

O(h2)

O(h)

Mesh-based FEM

Re
du

ct
io

n
in

 l2
 e

rr
or

node spacing h # walks n

Re
du

ct
io

n
in

 R
M

SE

Tested on 10k models from the Thingi10k dataset

276

Meshless FEM is unreliable

Walk on spheres converges predictably

WoS (delta tracking)

Meshless FEM (Weighted Least Squares)

node spacing h node spacing h

Re
du

ct
io

n
in

 l2
 e

rr
or

Re
du

ct
io

n
in

 l2
 e

rr
or

Meshless FEM (RBF-FD w. polynomial augmentation)

Mesh-based FEM

Re
du

ct
io

n
in

 l2
 e

rr
or

node spacing h

~2x

O(1/ n)

walks n

Re
du

ct
io

n
in

 R
M

SE

277

Meshless FEM is unreliable

Solvers are difficult to tune

n = 24n = 18n = 12Reference

RBF-FD 2nd order (4k uniformly distributed nodes)

Reference n = 12 n = 18 n = 24

4k uniformly distributed nodes

neighborhood size n

l2
 e

rr
or

278

Aliasing of boundary conditions

Monte Carlo decouples boundary conditions/coefficients from geometry

279

boundary data reference

Experiment: solve screened Poisson equation w/ high-frequency boundary data

walk on spheres

125 walks

FEM

2k vertices

meshless FEM

2k nodes125 walks 2k vertices

exact solution on
average—even for N=1

𝔼[IN] = I

Aliasing of boundary conditions

Monte Carlo decouples boundary conditions/coefficients from geometry

280

boundary data reference

Experiment: solve screened Poisson equation w/ high-frequency boundary data

walk on spheres

500 walks

FEM

20k vertices

meshless FEM

20k nodes500 walks 20k vertices

exact solution on
average—even for N=1

𝔼[IN] = I

Aliasing of boundary conditions

Monte Carlo decouples boundary conditions/coefficients from geometry

281

boundary data reference

Experiment: solve screened Poisson equation w/ high-frequency boundary data

walk on spheres

1k walks

FEM

200k vertices

meshless FEM

200k nodes1k walks 200k vertices

exact solution on
average—even for N=1

𝔼[IN] = I

282
PINNs specialize to PDE dynamics, geometry, and boundary/initial conditions

Physically Informed Neural Networks (PINNS)

283

AI based denoising for rendering

