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Photorealistic image generation has revolutionized industries

Entertainment Pre-visualization
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Photorealistic image generation will revolutionize more industries

Computer Vision [Vicini et al, 2023] Autonomous Driving [NVIDIA Drive Sim]
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Physics beyond light transport

acoustic modeling

structural analysisthermal diffusion electrostatics

microfluidics biophysics

thermal diffusion structural analysisthermal diffusion electrostaticsthermal diffusionΔu = 0
Partial Differential Equations, e.g., Laplace Eq.

Δ :=
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2



Partial Differential Equations (PDEs)

∂Ω

g(x)

u(x)

Ω

Δu = 0 on Ω
u = g on ∂Ω
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Given: values  on boundaryg Find: solution  on interioru

PDEs describe a function implicitly in terms of derivatives, solve to 
recover explicit function values
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Integrated Circuits Design
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Data Center Design
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Data Center Design

Geometry Physics
(simple)(complex)
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Geometric complexity has increased drastically

laser scanning / LiDAR additive manufacturing

neural radiance fields

text-to-3D



Traditional methods for solving PDEs
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“Zoo” of solvers:
— finite difference methods
— finite element methods
— finite volume methods
— boundary element methods
— spectral methods
— …

Common thread: all use finite dimensional approximation

ϕi
Ω

∂Ω

⟨Δu, ϕi⟩ = 0, ∀i



Traditional methods for solving PDEs
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error due to approximation  
of geometry

error due to approximation  
of functions

Inevitable consequence of finite dimensional approximation:



Geometry found in physical world is extremely complex

Example: high-resolution microCT scan

16
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Complex geometry can take extremely long to mesh!

14 hours / 30 GB RAM
to generate “sim-ready” mesh 
memory intensive & difficult to parallelize



Most geometry in the wild is not suitable for simulation
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A bad mesh can yield a false impression of reality

19

FEM solution reference solution 

Example: geodesic distance via FEM

N. Sharp & K. Crane, A Laplacian for Nonmanifold Meshes (2020) 
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If meshing is slow, who cares if solver is fast?

cleanup / mesh repair

tetrahedralize

FEM solve
input boundary 
representation

high-quality
surface mesh

volume mesh

PDE solutionfinite element method (FEM) pipeline

bottleneck



Meshing is always the bottleneck for simulation!
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Robust meshing is still hard, even after 20+ years

22

Not likely to ever be completely “solved”:

TriWild: Robust Triangulation With 
Curve Constraints [Hu et al. 2019]

Fast Tetrahedral Meshing in 
the Wild [Hu et al. 2020]

Tetrahedral Meshing in the Wild
[Hu et al. 2018]

Robust Tetrahedral Meshing of
Triangle Soups [Spillman et al. 2006]

Tetrahedral Mesh Generation by 
Delaunay Refinement

[Shewchuk 1998]

A Quality Tetrahedral Mesh 
Generator and Three-Dimensional 
Delaunay Triangulator [Si 2006]
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Traditional PDE solvers require volumetric meshing



Robust meshing can be wildly unpredictable
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Even very simple geometry can take hours to mesh:

Input (Thingi10k #996816)  FastTetWild, 1 hour 25 minutes

Hu et al, “Fast Tetrahedral Meshing in the Wild” (2020)



Even when meshing “succeeds”, critical details can be lost

25

boundary mesh (input) FastTetWild (output boundary)

Hu et al, “Fast Tetrahedral Meshing in the Wild” (2020)



To faithfully simulate nature, we must be able to
handle a much greater level of geometric complexity.



Photorealistic Image Generation
Problem: given a description of a 3D scene (geometry, materials, lights, 
camera), synthesize an image indistinguishable from a photograph.

3D model synthesized image
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Rendering: from Finite Elements to Monte Carlo

mesh scene

setup large matrix

perform 
global solve

global & painful!Early days of rendering: finite element radiosity
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Rendering: from Finite Elements to Monte Carlo

Monte Carlo ray tracing avoids meshing entirely, via repeated random sampling, via repeated random sampling

ray-scene intersections

local & easy!

Monte Carlo ray tracing avoids meshing 

recursively shoot rays



Monte Carlo methods

30

Evaluate an integral by averaging its integrand N times:Evaluate an integral by averaging its integrand N times:

∫Ω
f(x) dx ≈

|Ω |
N

N

∑
i

f(Xi)



19 billion triangles19 billion triangles

Monte Carlo rendering can now handle
immense geometric complexity

1.2 billion triangles1.2 billion triangles16 billion triangles16 billion triangles



NASA’s Curiosity Mars Rovera rendering of

Rendering “just works,” and 

gives immediate feedback, no 

matter what you throw at it.

“Thermal modeling is required beginning at the project conceptual design 
stage and continuing through preliminary and detailed design stages ... 
simplified calculations and rules of thumb are useful at this stage, but a 
computer model provides the ability to evaluate and respond quickly to 
proposed system trade-offs.”

—NASA Guidelines for Thermal Analysis of Spacecraft Hardware
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Physics beyond light transport

acoustic modeling

structural analysisthermal diffusion electrostatics

microfluidics biophysics

thermal diffusion structural analysisthermal diffusion electrostaticsthermal diffusion

How can we make 
simulation more 
like rendering?



From Ray Tracing to Random Walks

ray tracing walk on spheres [Muller 1956]
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Recursive random walks for solving the Laplace equation Δu = 0



From Ray Intersections to Closest Point Queries

Ray Intersection Query Closest Point Query

35



Meshing is hard…finding closest point is easy!

36

EASYHARD
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Thermal analysis of Curiosity Mars rover



Analyze locally 
in region  

of interest! 

Simulate only what you see!
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Thermal analysis is traditionally difficult in design phase

input boundary mesh boundary of tetrahedral mesh

30 min 2 hours

8 hours



Monte Carlo PDE solvers are discretization-free!
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May never be able to solve certain PDEs w Monte Carlo…
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NASA’s Curiosity Mars Rovera rendering of

Rendering “just works,” and 

gives immediate feedback, no 

matter what you throw at it.

Build a “ray tracer”
for physics?



Course overview
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Part 5: WoS as simulation of Brownian motion (Rohan)

Part 6: Variance reduction (Bailey)

Part 7: Evaluation, recent work & future directions (Bailey)

Parts 1–2: Basics of Monte Carlo & WoS for Laplace eq (Bailey)
— key concepts: estimation of integrals, sample generation, bias

Parts 3–4: WoS for Poisson eq (Bailey) & Neumann boundary conditions (Rohan) 
— key concept: importance sampling
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PART 1:  
Basics of Monte Carlo



Thanks in advance!

Many slides based on 
Keenan Crane & 

Gautam Iyer’s
Monte Carlo course at CMU, 
thanks Keenan & Gautam!! 
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What are Monte Carlo methods?

• Broadly, Monte Carlo methods are algorithms that 
use repeated random sampling to obtain approximate 
solutions to difficult computational problems 

• simulation, integration, optimization, sampling 

• Not all randomized algorithms are Monte Carlo 
methods. 

• E.g., Las Vegas algorithms use repeated random trials 
to get an exact solution, but with nondeterministic 
runtime (e.g. randomized quick sort)

algorithms

randomized 
algorithms

Monte Carlo 
methods
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motivation: selling custom shaped cookies, want to set price based on cookie size 
challenge: how do you compute the area of an arbitrary cookie?
naive: compute analytically or decompose into simple shapes

r b

π ⋅ r2 b ⋅ h

h

8

∑
i=1

bi ⋅ hi

2
⏟

triangle area

6

∑
i=1

bi ⋅ hi
2

⏟
triangle area

+
6

∑
j=1

R2
j cos−1 (

Rj − hj

Rj ) − (Rj − hj) ⋅ 2 ⋅ Rj ⋅ hj − h2
j

circular segment area

area becomes less trivial to compute

?

Flavor of Monte Carlo: computing area of a cookie
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Monte Carlo approach to computing area:
1. throw N random darts at plate containing the cookie
2. compute proportion of darts that hit cookie
3. multiply proportion by area of plate

cookie area ≈ # darts hit cookie

# total darts thrown
plate area

now we can easily handle complex shapes:

dart hits cookie

dart misses cookie

bounding 
plate

Flavor of Monte Carlo: computing area of a cookieFlavor of Monte Carlo: computing area of a cookieFlavor of Monte Carlo: computing area of a cookieFlavor of Monte Carlo: computing area of a cookieFlavor of Monte Carlo: computing area of a cookieFlavor of Monte Carlo: computing area of a cookie
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• algorithms can be extremely simple
• solution is approximate, but correct eventually
• easy to parallelize: average independent trials 

Already have some important takeaways:

area
estimated area

number of darts thrown

Flavor of Monte Carlo: computing area of a cookie
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Solving problems with integration

• Many problems can be reframed as integration problems: computing area, light 
transport, thermal conduction, maximum likelihood estimation, etc.

Find  such thatu
Δu = f

write down problem

u(x) = ∫ℝN

G(x, y)f(y) dy

rewrite as integral evaluate  integral

u(x) =
1
N

N

∑
i=1

G(x, yi)f(yi)
p(yi)

• Primarily focus on using integration to solve partial differential equations  with walk on 
spheres

50



Most integrals do not admit closed form solutions

• Forgot your integration rules? No problem! 
• Analytic integration is often not a viable option 
• Even simple looking expressions may have no integral expression in terms of 
elementary functions (Liouville theorem).
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Numerical quadrature

I = ∫
b

a
f(x) dx ≈

n

∑
i=1

f ( xi+1 + xi

2 ) Δx

• Divide the integral up into discrete intervals we can approximate as constant functions 
• Deterministic and straightforward to evaluate in this 1D example, what’s the catch?

Δx
a b

f(x)

example:
(Midpoint rule)

xi + xi+1

2

f ( xi + xi+1

2 )
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Curse of dimensionality

• In higher dimension, we divide the domain up into higher order voxels 
• Cost grows exponentially as dimension increases!

O(n) O(n2) O(n3) O(nk)
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 Confounding issue: often don’t have a nice smooth integrand

smooth oscillatory

Aliasing

spiky

54



Nyquist-Shannon sampling theorem says we’re basically ok as long as sample rate is 
adapted to the highest frequency…

oscillatory

Aliasing — Nyquist-Shannon

more samples

…but not every function has a highest frequency

out of luck
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 These aren’t just pathological cases, these features are commonly found in nature

Aliasing in real functions

high frequency
entire city skyline 

with buildings

discontinuities
bridge masks 
background

spikes
Lighting from  
cars on bridge
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These seemingly hopeless integration problems can become tractable with the right 
Monte Carlo methods

Inspiration from Monte Carlo rendering

real photograph rendered scene from “Big Hero 6”
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random 
sample point

uniformly distributed points

volume of 
domain

Central idea:  replace deterministic sample points with random ones

Monte Carlo to the rescue

xi

f(xi)

number of 
samples

∫Ω
f(x) dx ≈

|Ω |
n

n

∑
i=1

f(Xi)
f(x)

Xi ∼ 𝒰Ω

Note: number of samples is not 
fixed, can progressively add 

more samples to refine estimate

x

f(f(f xixix )
1
n

n

∑
i=1

f(Xi)

|Ω |
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Monte Carlo to the rescue

Solves both of the problems with quadrature

Always some chance of sampling high 
frequency features—no “fixed” 

highest frequency

Chose the amount of 
computation to do since rate of 
convergence does not depend 

on dimension
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A Monte Carlo estimator is a random variable since it is a function of random samples.

How do we know Monte Carlo integration is “correct”?

E [X] :=
n

∑
i=1

xi ⋅ p(xi)

 discrete

expected value: E [X] := ∫Ω
x ⋅ p(x) dx

 continuous

unbiased estimator is correct on average, for any n
consistent estimator is correct eventually, as 
biased estimator converges, but to the incorrect value

n → ∞

I := ∫Ω
f(x) dx Xi ∼ 𝒰Ω

̂In =
|Ω |

n

n

∑
i=1

f(Xi)

E[ ̂In] = I

unbiased

P ( lim
n→∞

E[In] = I)
consistent

unbiased

consistent

biased

I

N samples

es
tim

at
or

 v
al

ue
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Easy to show that the expected value of the basic Monte Carlo estimator with uniformly 
distributed samples is unbiased 

E[ ̂In] = E [ |Ω |
n

n

∑
k=1

f(Xk)] definition of  ̂IN

=
|Ω |

n

n

∑
k=1

∫Ω
f(x)p(x) dx definition of expectation

=
1
n

n

∑
k=1

∫Ω
f(x) dx = I p(x) = 1/ |Ω |

Basic Monte Carlo estimator is unbiased

̂In :=
|Ω |

n

n

∑
i=1

f(Xi),

I := ∫Ω
f(x) dx

integral

Xk ∼ 𝒰Ω

estimator

=
|Ω |

n

n

∑
k=1

E [f(Xk)] linearity of expectation
E [X + Y] = E[X] + E[Y]
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Theory and practice is a two way street
• Practical obstacles may motivate changes to 
mathematical formulation

• E.g., different sampling strategies may be better 
suited to different architectures

Numerical  and computational issues

(16-bit floating point number)

Floating point
• Computers don’t operate on real numbers

float I = 0.0f;
for k=1,..,n {
   x = uniformSample();
   I += f(x)/(float)n;
}

Parallel implementation
• basic Monte Carlo is “embarrassingly parallel”
• Integrand may take a very different amount of 
work, or use divergent memory accesses
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PART 2:  
WoS for Laplace Equation



Roadmap for solving Laplace PDE

u(xk) =
1

|∂B(xk) | ∫∂B(xk)
u(y) dy

mean value integral
integral representation

Walk on Spheres
Monte Carlo estimator 

̂u(xi) = { ̂u(xi+1) if xi+1 ∉ ∂Ωϵ

g(xi+1)

∂B(xk)

u(x)
x1 x2x0

xk

∂Ωϵ

∂Ω

g(x)
u(x)

Δu = 0 on Ω
u = g on ∂Ω

Laplace PDE
differential form

Find  such thatu
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Laplace PDE with Dirichlet boundary condition

given: values on the boundary of a region Ω

+1

0

-1

∂Ω

g(x) u(x)

Ω

u = g on ∂Ωfind: smooth interpolation into interior

65

Δu = 0 on Ω



Review: Laplacian

66

Δu =
n

∑
i=1

∂2

∂x2
i

u

Δu(x, y) =
∂2

∂x2
u(x, y) +

∂2

∂y2
u(x, y)

Δu = ∇ ⋅ ∇u = div ∘ grad u

coordinates.

differential operators.

u : ℝn → ℝ (twice differentiable)



Laplacian gives deviation from local average

More intuitively, can think of the 
Laplacian of a function  as difference 
between value at a point , and the 
average value over a small sphere (or 
ball) around 

u
x0

x0

Δu(x0) ∝ lim
ϵ→0

1
ϵ2 ( 1

|Sϵ(x0) | ∫Sϵ(x0)
u(x) dx − u(x0))

u(x0)u(x)

sphere

area

integral over 

sphere

value at

center
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Mean value property of harmonic functions

Q: Given this interpretation of the Laplacian, what can we say about the behavior of a 
harmonic function (i.e. a function satisfying ) ?
A: Value at center and average over a sphere are equal.

u Δu = 0

mean value property

u(x) =
1

|∂B(x) | ∫∂B(x)
u(y) dy ∂B(x)

u(x)

x

y

Not just an approximation, 

holds  exactly for any 

 of any radiusB ⊂ Ω

Can we avoid finite-dimensional approximation 
completely with Monte Carlo?
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The mean value property can be evaluated using a basic 
Monte Carlo estimator

yi ∼ 𝒰∂B(x)uniform distribution on sphere

Monte Carlo estimation of the mean value integral

u(x) =
1

|∂B(x) | ∫∂B(x)
u(y) dy

mean value property

yix

Δu = 0 on Ω
u = g on ∂Ω

̂u(x) =
1

|∂B(x) |
|∂B(x) |

n ∑
i=1

u(yi)

mean value estimator

̂u(x) =
1

|∂B∂B∂ (x) |
|∂B∂B∂ (x) |

n ∑
i=1

mean value estimator

̂u(x) =
1
n ∑

i=1

u(yi)

mean value estimator
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In general, we don’t know the solution everywhere on a 
the sphere so we recursively evaluate u

̂u(y1)x

Ω

Recursive Monte Carlo estimator

Δu = 0 on Ω
u = g on ∂Ω

u(x) =
1

|∂B(x) | ∫∂B(x)
u(y) dy

mean value property

̂u(x) =
1
n ∑

i=1

̂u(yi)

mean value estimator

̂u(y2)̂u(y3)yi ∼ 𝒰∂B(x)
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Branching is not a feasible strategy since we’ll quickly 
run out of memory trying to store intermediate state

Branching Monte Carlo estimator

Δu = 0 on Ω
u = g on ∂Ω

u(x) =
1

|∂B(x) | ∫∂B(x)
u(y) dy

mean value property

̂u(x) =
1
n ∑

i=1

̂u(yi)

mean value estimator 3 sample estimator leads to ~43 million estimators after 16 recursive steps

x

yi ∼ 𝒰∂B(x)

Ω
71



To avoid branching, we only evaluate a 
single sample at each sphere

x1 x2x0
xk

∂Ωϵ

Walk on Spheres

u(x) =
1

|∂B(x) | ∫∂B(x)
u(y) dy

mean value property

̂u(xi) = {
̂u(xi+1) if xi+1 ∉ ∂Ωϵ

g(xi+1) otherwise

walk on spheres estimator

xi ∼ 𝒰∂B(x)

Δu = 0 on Ω
u = g on ∂Ω

u(xk) ≈ g(xk)

∂Ωϵ

A walk terminates once solution is approximated with boundary data.



u = 0 // solution estimate
for i=1,..,nWalks {
   x = x0 // start a new walk
   do {
      // move to random point on biggest empty sphere
      r = distance(x,!")
      x = randomSphere(x,r)
   } while(r > !) // close enough!
   u += g(closestPoint(x,!")) // sample boundary value
}
return u/nWalks // return average boundary value

Walk on Spheres algorithm

̂u(xi) = {
̂u(xi+1) if xi+1 ∉ ∂Ωϵ

g(xi+1) otherwise

walk on spheres estimator

Δu = 0 on Ω
u = g on ∂Ω

xi ∼ 𝒰∂B(x)
73



Recursive estimators

ray tracing walk on spheres [Muller 1956]

74

Recursive random walks for solving the Laplace equation Δu = 0



Warning about convergence

Q: Are Monte Carlo estimates of arbitrarily nested integrals well defined?

u(xk) =
1

|∂Bk | ∫∂Bk

u(xk+1) dxk+1

!!

I = ∫Ω
f(x) dx ̂In =

|Ω |
n

N

∑
i=1

f(Xi)

Earlier we showed that Monte Carlo estimators of integrals converge

u(x) = lim
k→∞ [

k

∏
i=0

1
|∂Bi | ]∫∂B0

∫∂B1

. . ∫∂Bk

u(xi+1) dxk . . . dx2dx1

A: Need to make sure that the integral exists…
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Convergence of WoS — integral viewpoint

Q: For a matrix  how do we check whether  exists? 

A: Just check that  cannot make any vector “bigger” at each step

A ∈ ℝn×n lim
k→∞

Akx

A

∥Ax∥ < ∥x∥ ∀x ∈ ℝn

matrix convergence

∥Lu(x)∥op < ∥u(x)∥op

linear operator convergence

∀u ∈ ℝn → ℝ

 Same approach for mean value integral, which uses an operator norm

∥u∥op := ∫∂Ω
|u(x) | dx

integral operator norm
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∥Lu(x)∥op < ∥u(x)∥op ⟺ ∥L∥op < 1

convergence criteria 

Non-convergence for mean value operator

∥L∥op < 1

Mean value integral is an “averaging operator” applied to the solution  on the 
boundary of the sphere

u(x)

Lu(x) :=
1

|∂B(x) | ∫∂B(x)
u(y) dy

∂Ωϵ

∂B(x)

∂Ω

x
∥L∥op =

1
|∂B(x) | ∫∂B(x)

dx = 1
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∥Lu(x)∥op < ∥u(x)∥op ⟺ ∥L∥op < 1

convergence criteria 

-shell to the rescueϵ

Lu(x) :=
1

|∂B(x) | ∫∂B(x)\∂Ωϵ

u(y) dy +
1

∂B(x) ∫∂B(x)∩∂Ωϵ

g(y) dy
1

|∂B∂B∂ (x) | ∫∂∫∂∫ B∂B∂ (x)\∂Ωϵ

u(y) dydyd

linear operator  Lϵu constant term b

Integral operator  for walk on spheres isn’t quite the “averaging operator”— also 
accounts for the contribution from Dirichlet boundary from -shell

L
ϵ

Ωϵ

∂B(x)

∂Ω

x

∥Lϵ∥op =
1

|∂B(x) | ∫∂B(x)\Ωϵ

dx < 1

Lu(x) :=
1

|∂B(x) | ∫∂B(x)
u(y) dy

∂Ωϵ

∂B(x)

∂Ω

x
∥L∥op =

1
|∂B(x) | ∫∂B(x)

dx = 1

∥Lu(x)∥op < ∥u(x)∥op ⟺ ∥L∥op < 1
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Stopping tolerance ε for Dirichlet boundary

Introduces minimal bias and has little impact on performance
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Binder & Braverman, “The Rate of Convergence of the Walk on Spheres Algorithm” (2012)

Efficiency of Walk on Spheres

Theorem: If the domain boundary  is smooth, or the domain is convex, then WoS reaches the boundary in  steps, on average.

∂Ω
Ω

O(log 1/ϵ)
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Discussion: Stochastic vs. Deterministic Methods
How much does it cost to capture fine-scale features, of size O(ε)?

Stochastic vs. Deterministic Methods

How much does it cost to capture fine-scale features, of size O(ϵ)
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Discussion: Stochastic vs. Deterministic Methods
How much does it cost to capture fine-scale features, of size O(!)?

finite differences walk on spheres

!!

O(log 1/!) 
steps

O(1/!d) 
grid cells

walk on spheresfinite differences

Stochastic vs. Deterministic Methods

O(log(1/ϵ))

O(1/ϵ2)
O(1/ϵ3)

ϵ
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Closest Point Queries

r
x

Q: How expensive is a single step of walk on spheres?

A: Depends on the cost of computing the distance to the closest point

83



Geometric queries in Monte Carlo methods

Ray Intersection Query Distance Query 84

rendering walk on spheres



Closest point queries

For query point , find closest point  on domain boundary x x′ ∂Ω

Example. Line segment ( )∂Ω = A

t := (x − p) ⋅ (q − p)/ |p − q |2

x′ =
p, t < 0
q, t > 0,
(1 − t)p + tq,  otherwise

d(x, A) = |x − x′ |
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Closest point queries

For query point , find closest point  on domain boundary x x′ ∂Ω

Example. Line segment ( )∂Ω = A

d(x, A) = |x − x′ |

Example. Two line segment ( )∂Ω = A ∪ B

d(x, A ∪ B) = min(d(x, A), d(x, B))
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Closest point queries

For query point , find closest point  on domain boundary x x′ ∂Ω

Example. Line segment ( )∂Ω = A

d(x, A) = |x − x′ |

Example. Two line segment ( )∂Ω = A ∪ B

d(x, A ∪ B) = min(d(x, A), d(x, B))

Example. Large number of line segments

Build bounding volume hierarchy (BVH) 
amortized cost of query is  O(log n)
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Benefits of Monte Carlo — Lightweight data-structure

88

input 
boundary mesh

FEM mesh (FastTetWild) 
1 hour 25 minutes

build BVH for WoS 
few milliseconds 



Geometric generality

harmonic

Walk on spheres works any geometry that supports empty sphere queries, for example:

signed distance neural

implicit

mesh

explicit

harmonic

Walk on spheres works any geometry that supports empty sphere queries, for example:

signed distance neural

implicit

mesh

explicit

signed distancemesh signed distancemesh harmonicsigned distance neural harmonicsigned distance neural
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Benefits of Monte Carlo Methods

90

Monte Carlo PDE solvers provides many of the same benefits:

Geometric
Flexibility
Geometric
Flexibility RobustnessRobustness ScalabilityScalability ParallelismParallelism

CorrectnessCorrectness Progressive
Preview

Progressive
Preview CompatibilityCompatibilityOutput

Sensitivity
Output

Sensitivity



Benefits of Monte Carlo — Correctness
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[Wann Jensen 1995] [Sawhney & Crane 2020]

Rendering PDEs

Key idea: as long as equation is well-posed, numerical solution will be correct



Benefits of Monte Carlo — Scalability
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Rendering PDEs

Key idea: cost of geometric detail grows like O(n log n)

[Georgiev et al 2018]

1.2 billion triangles1.2 billion triangles
[Sawhney, Seyb, Jarosz, Crane 2022]

> 1 billion boundary elements> 1 billion boundary elements



Benefits of Monte Carlo — Parallelism
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Rendering PDEs

Key idea: just run on  processors, take average of  final estimatesN N



Benefits of Monte Carlo — Progressive
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Rendering PDEs

Key idea: fast-but-reliable “preview” enables instant exploration

Credit: Ricky Reusser



Benefits of Monte Carlo — Geometric Generality
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Rendering PDEs

Key idea: can work directly with heterogeneous geometry, without conversion

[Sawhney & Crane 2020]



Benefits of Monte Carlo — Robustness
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Rendering PDEs

Key idea: solution quality degrades gracefully

[Sawhney & Crane 2020]



History of grid-free methods
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• Theory & Algorithms
– Brownian motion related to heat & Laplace equations [Einstein 1905]
– walk on spheres [Muller 1956]
– a.k.a. floating random walk [Haji-Sheikh & Sparrow 1966]
– complexity analysis [Binder & Braverman 2012]
– extensions (Simonov, Sabelfeld, Mascagni, Deaconu, Booth, …)

• Applications
– integrated circuit design [Coz & Iverson 1992]
– porous media [Hwang et al 2000]
– molecular dynamics [Mascagni & Simonov 2004]
– …not much else!

9797

Mervin Muller

floating random walk [Haji-Sheikh & Sparrow 1966]
[Binder & Braverman 2012]

(Simonov, Sabelfeld, Mascagni, Deaconu, Booth, …)

integrated circuit design [Coz & Iverson 1992]
[Hwang et al 2000]

[Mascagni & Simonov 2004]

Mervin MullerMervin Muller

Main challenge: so far, applies to a limited class of PDEs!
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PART 3:  
WoS for Poisson Equation



Motivation for source terms

thermal analysis of PCBs thermal management in building design
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Roadmap for solving Poisson PDE

Walk on Spheres+
Monte Carlo estimator 

̂u(xi) = { ̂u(xi+1) + |B(xi) |G(xi, xi+1)f(xi+1)
g(xi+1

x1 x2x0
xk

∂Ωϵ

z0

z1
z2g(x)

Poisson PDE
differential form

Δu = f on Ω
u = g on ∂Ω

Find  such thatu

f(x)

u(x)

Green’s integral
integral representation

∫B(x)
G(x, z)f(z) dz
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Dirichlet boundary condition

Δu = 0  on Ω
u = g  on ∂Ω

g(x)

Intuition: temperature prescribed on the boundary

Ω

u(x)



Poisson equation

Δu = f  on Ω
u = g  on ∂Ω

f(x)

Ω

Intuition: adds additional background temperature

u(x)



Green’s function

ΔG(x, z) = δz(x)
heat injected at single point

G2D(x, z) =
−ln( |x − z | )

2π

G3D(x, z) =
1

4π |z − x |

G(x, z) δz(x)

free-space Green’s function

103



Green’s function

GB(x, z) = 0 on ∂B

G2D
B (x, z) =

1
2π

ln ( R2 − ⟨x, z⟩
R |z − x | )

G3D
B (x, z) =

1
4π ( 1

4 |x − z |
−

R
R2 − ⟨x, z⟩ )

ΔGB(x, z) = δz(x) on B

δz(x)GB(x, z)

Green’s function on a ball zero temperature at boundary
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Sources are additive

w(x) = 0  on ∂B
Δw(x) = δz1

(x) + δz2
(x) on B

δz1(x) + δz2(x)w(x)

w(x) = GB(x, z1) + GB(x, z2)

Sources are additive, so we can sum together 
the Green's function to model multiple Dirac 
deltas
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Green’s integral on a ball

w(x) = 0 on ∂B
Δw(x) = f(x) on B

f(z)w(x)
Green’s integral 

w(x) = ∫B
GB(x, z)f(z) dz

By convolving the Green’s integral with a source 
term we obtain the source contribution over the 
ball.
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Generalized mean value integral

x
sourceboundary

Δu = f on Ω
u = g on ∂Ω

The mean value integral is generalized by considering the 
source contribution within the ball centered at x.

generalized mean value integral

z

y

u(x) =
1

|∂B(x) | ∫∂B(x)
u(y) dy + ∫B(x)

G(x, z)f(z) dz

̂u(xi) = u(y) + |B(x) |G(x, z)f(z)

generalized mean value estimator

y ∼ 𝒰∂B(x) z ∼ 𝒰B(x)
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xi+1 ∼ 𝒰∂B(x) zi ∼ 𝒰B(xi)

x1 x2

xk

∂Ωϵ

Walk on spheres with source term

The mean value integral can be generalized using the 
Green’s integral to accounts for source terms

x0

Δu = f on Ω
u = g on ∂Ω

z0

z1
z2

walk on spheres estimator

̂u(xi) = {
̂u(xi+1) + |B(xi) |G(xi, zi)f(zi) if xi+1 ∉ ∂Ωϵ

g(xi+1) otherwise

generalized mean value integral

sourceboundary

u(x) =
1

|∂B(x) | ∫∂B(x)
u(y) dy + ∫B(x)

G(x, z)f(z) dz
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Walk on spheres with source term

Δu = f on Ω
u = g on ∂Ω

walk on spheres estimator

u = 0 // solution estimate
for i=1,..,nWalks {
   x = x0 // start a new walk
   do {
      // move to random point on biggest empty sphere
      r = distance(x,!")
      

      x = randomSphere(x,r)
   } while(r > !) // close enough!
   u += g(closestPoint(x,!")) // sample boundary value
}
return u/nWalks // return average boundary value

z = randomBall(x,r) // random point inside
 u += *r*r*G(x,z,r)*f(z) // source contribution π

̂u(xi) = {
̂u(xi+1) + |B(xi) |G(xi, zi)f(zi) if xi+1 ∉ ∂Ωϵ

g(xi+1) otherwise
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Green’s function G(x, z) source function f(z)uniform samples

Uniform sampling limitations

I = ∫B(x)
G(x, z)f(z) dz ̂Iuniform =

|B(x) |
n

n

∑
i=1

G(x, zi)f(zi)

Observation: most uniform samples don’t contribute much…



Importance sampling to the rescue

Idea: concentrate samples where the integrand is large

f(x)

x

don’t want to waste time on points 
that contribute little to integral

corrects for under / over 
sampling of uniform distribution

̂IImportance =
1
n

n

∑
i=1

f(Xi)
p(Xi)

draw more samples
where p is large

Xi ∼ pI = ∫
b

a
f(x) dx
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Sampling distributions: uniform vs Green’s function

importance samples Green’s function G(x, z)

uniform samples Green’s function G(x, z)

key: importance sampling improves efficiency



Variance of basic Monte Carlo estimator

V [ ̂Iimportance(x)] = V [ 1
n

n

∑
i=1

G(x, Zi)f(Zi)
p(Zi) ] definition of ̂Iimportance

=
1
n2

V [
n

∑
i=1

G(x, Zi)f(Zi)
p(Zi) ] homogeneity V[aX] = a2V[X]

=
1
n2

n

∑
i=1

V [ G(x, Zi)f(Zi)
p(Zi) ] independence of Zi

=
1
n

V [ G(x, Z)f(Z)
p(Z) ]

How do we quantify a “better” sampling PDF ?p(z)

identically distributed 

V[X] = E[(X − E[X])2]

variance

identically distributed 
Lowest variance achieved by making

p(z) ∝ G(x, z)f(z)
113



Walk on spheres with and without importance sampling

uniform sampling importance sampling Green’s function
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Walk on spheres with and without importance sampling

uniform sampling importance sampling Green’s function



Walk on spheres with and without importance sampling

uniform sampling importance sampling Green’s function



Importance sampling additional terms

uniform samples source samples f(z)
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How do we actually sample points?

rejection sampling

Sample from a known distribution,
 throw out samples proportionally 

to target function.

warping samples

Sample from a known distribution,
warp samples to target.

(e.g. inverse CDF transform) 

T
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Combining sampling strategies
• In practice, may have more than one importance sampling strategy that seems 
promising. Which one should you use?

• Metaphor:  Suppose I'm a soccer goalie, and know my opponent will either shoot 
left or shoot right—but no great way to predict which one

•Want “robust” strategy that works well no matter what happens 

left strategy right strategyright strategymixture strategy

multiple importance sampling provides principled approach to mixture distributions
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PART 4:  
WoS for Neumann Boundary Conditions



WoS solves PDEs with Dirichlet boundary conditions

121

Δu = 0 on Ω
u = g on ∂ΩD

Laplace eq.
Dirichlet condition

Prescribe given values
u = g on ∂ΩD



What about Neumann boundary conditions?

Δu = 0 on Ω
u = g on ∂ΩD

Neumann condition
∂u
∂n

= h on ∂ΩN

Prescribe given derivatives
∂u/∂n = h on ∂ΩN

Prescribe given values
u = g on ∂ΩD

Laplace eq.
Dirichlet condition
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What about Neumann boundary conditions?

Δu = 0 on Ω
u = g on ∂ΩD

∂u
∂n

= h on ∂ΩN

Fluid mechanics: 
velocity/pressure gradient

Structural analysis:
surface traction

Thermodynamics:
heat flux

∂u
∂n

= 000

u = 1

u = − 1

123

?
Neumann condition

Laplace eq.
Dirichlet condition



What about Neumann boundary conditions?

Observation: function extrapolated with slope  will mirror values across  h ∂ΩN

∂ΩN
slope 

 

∂u
∂n = h

124



Naïve attempt at reflected random walks

125

Problem: inefficient

!

Problem: incorrect/biased

Idea: sample biggest sphere around crossing one edge & reflect if necessaryx



Naïve attempt at reflected random walks
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du(x)
dn

≈
u(x + ζn) − u(x)

ζ

Idea: push walk into the domain by fixed distance [Mascagni & Simonov, 2004]



Mean Value Property

127

u(x)
A harmonic function  satisfies:u

u(x) =
1

|∂B(x) | ∫∂B(x)
u(y) dy



Boundary Integral Equation

In general, a harmonic function  on domain  also satisfies:u Ω

u(x) = ∫∂Ω
P(x, y) u(y) − G(x, y)

∂u
∂ny

dy

128

∂u
∂nynyn

u(y) G(x, y)

P(x, y) :=u = g on ∂ΩD

Dirichlet Neumann

∂u
∂n

= h on ∂ΩN

a.k.a. Green’s
representation 

theorem
P(x, y)

∂G
∂ny

(x, y)

Poisson kernel Greens fn



Boundary Integral Equation — derivation
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Step 1: Start with Laplace equation , and multiply both sides by :Δu = 0 G

Step 2: Apply integration by parts:

∫Ω
G(x, y) Δu dy = 0

∫Ω
∇ ⋅ (G(x, y) ∇u) dy − ∫Ω

∇G(x, y) ⋅ ∇u(y) = 0

∫∂Ω
G(x, y)

∂u
∂ny

dy − ∫Ω
∇G(x, y) ⋅ ∇u(y) = 0

Step 3: Apply divergence theorem to the first term:

∫Ω
∇ ⋅ V = ∫∂Ω

n ⋅ V



Boundary Integral Equation — derivation
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∫Ω
ΔG(x, y) u(y) dy = ∫∂Ω

P(x, y) u(y) − G(x, y)
∂u
∂ny

dy

u(x) = ∫∂Ω
P(x, y) u(y) − G(x, y)

∂u
∂ny

dy

Step 3: Apply divergence theorem to the first term:

∫∂Ω
G(x, y)

∂u
∂ny

dy − ∫Ω
∇G(x, y) ⋅ ∇u(y) = 0

Step 4: Apply integration by parts again to the second term

Step 6: By definition,  and we getΔG(x, y) = δx(y)

∫Ω
∇ ⋅ V = ∫∂Ω

n ⋅ V



Boundary Integral Equation
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For a Poisson equation , we can express solution as:Δu = f

—  not known on u ∂ΩN

Problems:

u(x) = ∫∂Ω
P(x, y) u(y) dy

−∫∂Ω
G(x, y)

∂u
∂ny

dy

+∫Ω
G(x, y) f(y) dy

u(y)

∂u
∂nynyn

f(f(f y)

P(x, y)

G(x, y)

G(x, y)

Poisson kernel

Greens fn

Dirichlet values

Neumann values

source term

Can we now apply Monte Carlo 
directly to this BIE?

—  not known on 
∂u
∂n

∂ΩD

!"#"$%"

— do not have random walk procedure

— never known for arbitrary P & G Ω



Poisson kernel & Green’s function
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!"#$"
!"#$"

!"#"$%"



Mean value property is a special case of BIE
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For a Poisson equation , we can express solution as:Δu = f

u(x) = ∫∂Ω
P(x, y) u(y) dy

−∫∂Ω
G(x, y)

∂u
∂ny

dy

+∫Ω
G(x, y) f(y) dy

u(y)

f(f(f y)

P(x, y)

G(x, y)

⟹ G(x, y) = 0 on ∂B

Let Ω = B ⟹ P(x, y) =
1

|∂B |

mean value property⟹

−∫∂∫∂∫ Ω
dydyd

∂u
∂nynyn

G(x, y)



Boundary Integral Equation
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Laplace equation (zero Neumann)

Δu = 0 on Ω
Laplace equation (zero Neumann)

Δu = 0 on Ω ! x
A∂A

134134
Intuition: “generalized mean value property”

u(x) = ∫∂A
P(x, y) u(y) dyu(y)

unknown
value at y

P(x, y)
Poisson kernel 

of A



Walk on subdomains
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Next idea: take a “walk” on subdomains that contain the 
Neumann boundary (by sampling Poisson kernel)

reflection!



Boundary Integral Equation (General)

136136

u(x) = ∫∂A
PC(x, y) u(y) dy∫∂∫∂∫ A∂A∂ integrate over boundary of (not )A C

PC(x, y)
Poisson kernel

of (not )C A

Boundary Integral Equation (General)

!
C A !A

Laplace equation (zero Neumann)

Δu = 0 on Ω



Choice of region C
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!

!

ballC =



Poisson kernel for a ball

138

!

!

!
!



Signed solid angle
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!!!"" #

!

M

Poisson kernel/solid angle is the kernel
of the winding number integral:

Jacobson et al, Generalized winding number (2013) 



Signed solid angle
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!!!"" #

!

M

Poisson kernel/solid angle is the kernel
of the winding number integral:

odd #hits inside⟹

even #hits outside⟹



Sampling signed solid angle in photorealistic rendering
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Lo(x) = ∫Ω
ρ(x, y) Li(y) V(x, y)

ny ⋅ ̂y − x
4πr2

dA sample by tracing ray & 
returning first (visible) hit!

y

brdf radiance visibility

ρ(x, y) LiLiL (y) V(V(V x, y)
nynyn ⋅ ̂y − x

4πr2

geometry

BIE has no 
visibility term !V

No problem, just shoot a ray 
in a random direction to 
sample from solid angle



Boundary Integral Equation (General)

142142

u(x) = ∫∂A
PC(x, y) u(y) dy∫∂∫∂∫ A∂A∂ integrate over boundary of (not )A C

PC(x, y)
Poisson kernel

of (not )C A

Boundary Integral Equation (General)

!
C A !A

Laplace equation (zero Neumann)

Δu = 0 on Ω



Choice of region A
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input domainA =

x

Multiple intersections exponential growth in points to track⟹



Star-shaped region

144

 = star-shaped region, = ballA C



Sampling signed solid angle in BIE

145

Just shoot a ray in a random direction

first hit: ball first hit: domain boundary



Walk on stars [Sawhney*, Miller*, Gkioulekas!, Crane!, 2023]

146

Δu = 0 on Ω
u = g on ∂ΩD

Neumann
∂u
∂n

= 0 on ∂ΩN

until we reach Dirichlet boundary :
• find star-shaped region  around 
• sample  from 

add boundary value  to average
(repeat N times)

∂ΩD

St xk

xk+1 ∂St
g(xk)

Laplace eq.
Dirichlet

146
Key difference: walk can now reflect off Neumann boundary



Finding star-shaped regions

147

How do we find big star-shaped regions?

AA B



Finding star-shaped regions

148

How do we find big star-shaped regions?

B
closest point

closest silhouette point

Take minimum distance to:
(i) Dirichlet boundary
(ii) silhouette of Neumann boundary



149

!"#$
%&'#

'&()*+,%&'#

-.#(/,
0&"'1

2345
'&6#

!"#$
%&'#

2345
'&6#

normal cone hierarchy

[Johnson & Cohen 2001][Johnson & Cohen 2001][Johnson & Cohen 2001]

Can re-use same BVH built for ray intersections and closest point queries.

!

!
!

query
point

silhouette
points

Closest silhouette point queries



Stopping tolerance ! for Neumann & Robin boundaries
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Star radius shrinks near concave parts of the Neumann boundary



Stopping tolerance ! for Neumann & Robin boundaries

151

Minimum radius parameter  has a performance vs bias tradeoffε

Star radius shrinks near concave parts of the Neumann boundary



near 
Dirichlet 

boundary?

add boundary 
value to total

YES

find closest 
point & closest 
silhouette point

NO shoot ray at star-
shaped region to 

get next point

(repeat N times, return average value)

Walk on stars (Laplace, Dirichlet, zero-Neumann)
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Walk on stars

153

Automatically becomes WoS when there is no Neumann boundary

mixed reflecting/absorbing pure Dirichlet (absorbing)



PDE solver in 150 lines of code
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standard C++ (no external dependencies)

https://geometry.cs.cmu.edu/stars



Reference implementation
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Additional features — non-zero Neumann conditions

156

Δu = 0 on Ω

∂u
∂n

= h on ∂ΩN

u = g on ∂ΩD

h

walk picks up contribution
with every reflection on 

Neumann boundary 



Additional features — pure Neumann problems

157

Δu = 0 on Ω

∂u
∂n

= h on ∂ΩN

u = g on ∂ΩD

h

walk continues forever…
 use Tikhonov regularization 

to terminate walks!



Additional features — Open domains & double-sided conditions

158
 — collection of open & closed curvesΓ

Δu = 0 on Ω∖Γ
u = g+ on Γ+

u = g− on Γ−



Oxygen diffusion — walk on stars

159



Oxygen diffusion — FEM

25.1 hours
to generate 

“sim-ready” mesh

160

11 minutes
broken

geometry 

25.1 hours
to generate 

“sim-ready” mesh

11 minutes
broken

geometry 
Takeaway: Doesn’t matter how fast/accurate your FEM 
solver is if mesh generation is slow or unreliable.



161161

“The heat equation helps to answer a question: is it done yet?  
Or rather, it could, if only the complexity of food did not defy our 
ability to model it mathematically. … It would take extraordinary 
effort to represent such intricate, highly-variable patterns in a 
heat-transfer model.”

—Myhrvold & Migoya, “Modernist Bread”

Thermal transfer



preview
(faster than a real toaster!)

Thermal transfer on a detailed CT scan (4 million triangles)
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Thermal transfer
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boundary conditions evaluated “on demand”

Takeaway: Easy to mix & match not only 
geometric representations, but also algorithms.

Thermal transfer



Walk on boundary [Sabelfeld & Simonov 2013]

165

input domainA = Euclidean spaceC =

x

Multiple intersections exponential variance⟹



!"#$ &'
()"*(

!"#$%#$&'$()*+,!"#$%-./"#.*+,

!"#$ &'
+&,'-"*.

[Sabelfeld & Simonov 2013]
[Sugimoto et al 2023]

Comparison to walk on boundary

166



167

star-shaped regionA = ballC =

x

What other subdomains can we use?

!

x

Takeaway: Often not sufficient to throw the MC 
hammer at integration problems. 

Geometric insights are critical for designing 
stable and efficient MC estimators.

Walk on stars



Sampling signed solid angle in photorealistic rendering

168

Lo(x) = ∫Ω
ρ(x, y) Li(y) V(x, y)

ny ⋅ ̂y − x
4πr2

dA

brdf radiance visibility

ρ(x, y) LiLiL (y) V(V(V x, y)
nynyn ⋅ ̂y − x

4πr2

geometry

Critical to importance sample

both  and V
ny ⋅ ̂y − x

4πr2

sample by tracing ray & 
returning first (visible) hit!

y



Long walk lengths

169

Reflecting

Absorbing

WoSt Avg # Steps: 219Ray Tracing Avg # Steps: 240

walk origin
termination

Reflecting

Absorbing

Always possible to build more efficient 
Monte Carlo estimators!
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PART 5: 
WoS as Simulation of Brownian Motion 
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A tale of three types of equations…



Kakutani’s Principle

172

u(x) = 𝔼[g(WT)]
x

Δu = 0 on Ω
u = g on ∂ΩD

Solution to Laplace eq can be computed by simulating Brownian motion

≈
1
N

N

∑
i=1

g(Wi
T)



Brownian motion

173

Collection of independent normally-distributed incrementsCollection of independent normally-distributed increments

Wt2 − Wt1 ∼ 𝒩(0, Δt)



Brownian motion

174

Collection of independent normally-distributed increments

decreasing  Δt

“ ”dWt



History of Brownian motion

175

Robert Brown (botanist) 
studied erratic movement of pollen  
in water under a microscope (1827)

Albert Einstein (physicist) 
related density of Brownian particles  
to solution of a heat equation (1905)

Nobert Wiener (mathematician) 
rigorous mathematical theory of Brownian motion as continuous,  
non-differentiable paths (Wiener process, 1923)



Universality of Brownian motion

176

Even though random processes in nature, science, technology have 
very different origins, their aggregate behavior is well-predicted by BM

thermal fluctuations reaction diffusion optimal control market volatility



Universality of Brownian motion

177

Even though random processes in nature, science, technology have  
very different origins, their aggregate behavior is well-predicted by BM

diffusion models in machine learning [Heitz et al, SIGGRAPH 2023] 



Simulation of Brownian motion via Euler Muruyama

178

Collection of independent normally-distributed increments

Wt2 − Wt1 ∼ 𝒩(0, Δt)

Collection of independent normally-distributed incrementsCollection of independent normally-distributed increments

WtWtW
2t2t − WtWtW

1
∼ 𝒩(0, Δt)Wt2 ≈ Wt1 + ξΔt, ξ ∼ 𝒩(0, 1)



Numerical challenges in bounded domains

179

small time steps accurate results, long compute timesΔt →

large time steps shorter compute times, large bias (error)Δt →

 too smallΔt  too bigΔt  just right? 
(still biased)
Δt

ξΔt

truncate final step walks can jump
across domains 



Simulation of Brownian motion via Walk on Spheres
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u(x) = 𝔼[g(Wτ)]

Δu = 0 on Ω
u = g on ∂ΩD

Solution to Laplace eq can be computed by simulating Brownian motion

≈
1
N

N

∑
i=1

g(Wi
τ)

x

∂B(xk)

x

Brownian motion has a uniform exit distribution
for a sphere of any size  



Kakutani’s Principle on a ball

181

Kakutani’s Principle on a ballKakutani’s Principle on a ball

differential equation
(Laplace)

Time to reach boundaryT →

1
|∂B(x) | ∫∂B

u(y) dyΔu = 0 on Ω
u = g on ∂Ω

𝔼 [g(WT) W0 = x]
Kakutani’s Principle

(any domain)
mean value property

(on ball)

∂B(xk)

xx

WoS provides 
unbiased acceleration

of Brownian motion 
in bounded domains!



Stochastic representation for source term
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Stochastic representation for source termStochastic representation for source termStochastic representation for source term

differential equation
(Poisson)

Harmonic Green’s Function G(x, y)

Time to reach boundaryT →
∫B(x)

f(y) G(x, y) dyΔu = f on Ω
u = 0 on ∂Ω

𝔼 [∫
T

0
f(Wt) dt W0 = x]

stochastic representation
(any domain)

integral representation
(source term on ball)

f



Deriving PDE estimators for Walk on Spheres
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STOCHASTIC
REPRESENTATION

e.g., Kakutani’s Principle

INTEGRAL
REPRESENTATION
e.g., mean value property

DIFFERENTIAL
EQUATION

MONTE CARLO
ESTIMATOR

recursively
apply Monte Carlo 

integration

assume 
domain
is a ball

write deterministic
equation in terms of

random process

Robin conditions
variable coefficients
derivative estimators
variance reduction

…



Walk on stars simulates Reflected Brownian motion

184

Δu = 0 on Ω

∂u
∂n

= h on ∂ΩN

u = g on ∂ΩD

Walk on stars handles Neumann conditions by 
reflecting random walks on the boundary 



Absorbed vs Reflected Brownian motion

185

Neumann ↔ reflectedDirichlet ↔ absorbed



Reflected Brownian motion — 1D

186

Xt := |Wt |



Reflected Brownian motion — nD / polyhedral

187



RBM simulation via Euler Muruyama

188

Numerical integration of Brownian motion is slow and biased

Wt2 ≈ Wt1 + ξΔt
ξ ∼ 𝒩(0, 1)

Wt2 ← proj∂Ω(Wt2)



Comparison to alternatives: SDE integration

189

Numerical integration of Brownian motion is slow and biased
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Robin boundary conditions

Δu = f on Ω

∂u
∂n

= h on ∂ΩN

u = g on ∂ΩD

∂u
∂n

− μu = k on ∂ΩR

∂ΩD

∂ΩR

Ω

x0

x1

Walk on stars also handles Robin conditions
[Miller*, Sawhney*, Crane!, Gkioulekas!, 2024]
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Robin boundary conditions

Linearly interpolate between Neumann and Dirichlet conditions

Neumann 
(purely reflecting)

Robin 
(more reflecting)

Robin 
(more absorbing)

Dirichlet 
(purely absorbing)



More accurate physical model



193

Partially reflected Brownian motion

Non-zero probability of absorption on the boundary

x0

Ω

∂ΩR

                      Robin 
(partially reflecting and absorbing)

random walk
absorbed on

Robin boundary 



Walk on stars with Robin boundary conditions

194

random walk 
terminated on 

Robin boundary 

Non-zero probability of absorption on the boundary



Radius of a star-shaped region with Robin conditions
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Robin 
(more reflecting)

Robin 
(more absorbing)

Dirichlet 
(purely absorbing)

Neumann 
(purely reflecting)



Reflectance function on Robin boundary

196

Reflectance  is bounded between 0 and 1 with correct choice of radius ρμ

ρμ ∈ [0, 1]
∂Ω

D

∂Ω
R

xk

R

ρμ ∈ [0,1]
ρμ ∉ [0,1]

      Naive estimator
       = distance to 
 (multiple intersections)

R
 WoSt for Neumann
= distance to silhoue!e 
 (single intersections)

 WoSt for Robin (          )
    chosen s.t. 
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A tale of three types of equations…



Real systems exhibit spatial variation

198

varying electrical conductivity
varying thermal diffusivity

varying permeability 
of porous media

varying elastic response 



Laplace equation

199
Intuition: temperature along boundary is fixed

Δu = 0boundary 
values g(x)

Δ :=
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2



Poisson equation

200
Intuition: adds additional “background temperature”

Δu = fsource 
term f(x)



Variable diffusion Poisson equation

201
Intuition: how fast does heat “spread out”?

diffusion 
coefficient α(x)

∇ ⋅ (α∇u) u = f



Stationary advection-diffusion equation

202
Intuition: heat is dragged along with a flowing river

transport 
coefficient ⃗ω (x)

Δu + ⃗ω ⋅ ∇u = f



Screened Poisson equation

203
Intuition: “cooling” due to absorption into background medium

absorption 
coefficient σ(x)

Δu − σu = f
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2nd order linear elliptic PDEs

In general, mean value integrals are not available 
for PDEs with variable coefficients 
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Stochastic differential equations (SDEs)
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Stochastic differential equations (SDEs)
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Stochastic differential equations (SDEs)
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Stochastic differential equations (SDEs)
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Stochastic differential equations (SDEs)

Brownian motion 
with variable diffusion α(x)

Brownian motion 
with drift ⃗ω (x)

Brownian motion 
with absorption σ(x)



dXt = ω(Xt) dt + α(Xt) dWt

u(x) = 𝔼 [∫
τ

0
e− ∫t

0 σ(Xs) ds f(Xt) dt + e− ∫τ
0 σ(Xt) dt g(Xτ)]

Stochastic representation for variable coefficient PDEs

210

Feynman Kac formula

Diffusion process

α(XtXtX )

σ(XtXtX )

ω(XtXtX )

σ(XsXsX ) f(f(f XtXtX ) (XτXτX )

drift diffusion

absorptionabsorption
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Walk on Spheres for PDEs with source terms

E.g., ; sample the spatially-varying source  inside each ballΔu = f(x) f



Transformations to PDE [Sawhney*, Seyb*, Jarosz✝, Crane✝]
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Variable coefficient       

Constant coefficient     

∇ ⋅ (α∇u) + ⃗ω ⋅ ∇u − σ u = f

Δu − σ̄ u = f(x, α, ⃗ω , σ, u)

∫B(x)
f(y, α, ⃗ω , σ, u) Gσ̄(x, y) dy + ∫∂B(x)

u(z) Pσ̄(x, z) dzIntegral

(No approximation!)

recursive 

constant

Girsanov & delta tracking 
transformations



dXt = ω(Xt) dt + α(Xt) dWt dXt = dWt

Re-express Feynman Kac in terms of Brownian motion

Transformations to Feynman—Kac

213

u(x) = 𝔼 [∫
τ

0
e− ∫t

0 σ(Xs) ds f(Xt) dt + e− ∫τ
0 σ(Xt) dt g(Xτ)]



Volume Rendering Equation (VRE)

VRE describes the radiance in heterogeneous absorbing & scattering media

L(w, ω) = ∫
d

0
e− ∫t

0 σ(xs) ds f(xt, ω) dt + e− ∫d
0 σ(xt) dt g(xd, ω)

214



Structural connection between VRE & Feynman—Kac

VRE gives radiance in heterogeneous 
absorbing & scattering media

Feynman—Kac for 2nd order 
variable coefficient PDEs

u(x) = 𝔼 [∫
τ

0
e− ∫t

0 σ(Ws) ds f(Wt) dt + e− ∫τ
0 σ(Wt) dt g(Wτ)]L(w, ω ) = ∫

d

0
e− ∫t

0 σ(xs) ds f(xt, ω ) dt + e− ∫d
0 σ(xt) dt g(xd, ω )
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DELTA TRACKING (RENDERING)

!"#$$%&'()*%+%($

(,--
*%+%

($!

[Woodcock et al 1965; Raab et al 2008]
DELTA TRACKING (WOS)

null event

[Sawhney*, Seyb*, Jarosz!, Crane!]

Take inspiration from Volume Rendering

[Hofmann et al, 2021]



To solve PDEs with variable material coefficients

217
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No model cleanup, reduction or homogenization!



219219

input mesh
(used directly by WoS)

FEM mesh
(~700k tetrahedra)

adaptive FEM mesh
(8.5 million tetrahedra)

WoS — 10 minutes FEM — 1.5 hours FEM+AMR — 2.5 hours

Adaptive Mesh Refinement (AMR)



Comparison with conventional solvers

Boundary element method does not require a volume mesh

To handle source terms or variable coefficients, must integrate with FEM

BEM solution

FEM solution

WoS solution

Boundary data

Source function

Di!usion coe!

BEM solution

FEM solution

WoS solution

Boundary data

Source function

Di!usion coe!
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Comparison with conventional solvers

Tessellation independent as boundary samples are generated randomly

B
EM

bo
un

da
ry

ca
ch

in
g 

Input boundary conditions Input boundary mesh

Dirichlet
Neumann

B
EM

bo
un

da
ry

ca
ch

in
g 

Input y conditions

0
1-1

Input y mesh

Singular matrix
Non-invertible system
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Today, walk on spheres can solve…

222

Δu = 0

Δu = f

∇ ⋅ (α∇u) + ⃗ω ⋅ ∇u − σu = f

Laplace equation

Poisson equation

Elliptic equations

walk on spheres walk on stars 

walk on spheres (delta-tracking) 



223[animation credit: Keenan Crane]



Boundary Integral Equation

224

For a Poisson equation , we can express solution as:Δu = f

u(x) = ∫∂Ω
P(x, y) u(y) dy

−∫∂Ω
G(x, y)

∂u
∂ny

dy

+∫Ω
G(x, y) f(y) dy

u(y)

∂u
∂nynyn

f(f(f y)

P(x, y)

G(x, y)

G(x, y)

BIEs also known for:
— Heat eq
— Helmholtz eq
— Wave eq
— Biharmonic eq
— Linear elasticity
— …
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PART 6: 
Variance Reduction



Efficiency of Monte Carlo

226

Squared error of Monte Carlo estimator is given by:

V[ f ]
N

V[ f ]
N

variance of the integrand

number of samples

To do better, make at least one of these factors smaller:

— less error for equal time ( ), e.g., importance samplingV[ f ]

— more samples per second ( ), e.g., parallelism, GPUs, caching1/N



∂ΩN

∂ΩD

Ω

walk on stars

Solution evaluated independently at very point — parallelism 



Noisy streamlines!

walk on stars

∂ΩN

∂ΩD

Ω

wind tunnelwind tunnel

Solution evaluated independently at very point — redundancy 



∂ΩN

∂ΩD

Ω
boundary sample

 shared walk [Miller*, Sawhney*, Crane!, Gkioulekas!, 2023]

boundary value caching



boundary value caching walk on stars
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Robustly handle meshes intended for visualization



Sample reuse in Monte Carlo Ray Tracing

232

Virtual Point Light Methods (VPLs)

Step 1: Deposit radiance estimates Step 2: Reuse cached radiance estimates



Sample reuse for PDEs

233

Δu = 0 on Ω

∂u
∂n

= h on ∂ΩN

Laplace equation

u = g on ∂ΩD

x

Ω

Dirichlet Neumann



Boundary Integral Equation

234

u(x) = ∫∂Ω

∂G(x, y)
∂n

u(y) − G(x, y)
∂u(y)

∂n
dy

Δu = 0 on Ω

∂u
∂n

= h on ∂ΩN

u = g on ∂ΩD

G(x, y)
free-space

Green’s function∂G(x, y)
∂n

free-space Poisson kernel

x

Ω

!"#$"

Neumann

∂u(y)
∂n

Green’s functionDirichlet

u(y)



Monte Carlo estimator for BIE

235

Δu = 0 on Ω

∂u
∂n

= h on ∂ΩN

u = g on ∂ΩD
x

Ω

!"#$"

Monte Carlo estimator for BIE

Δu = 0 on Ω
!"#$"

̂u (x) =
|∂Ω |

N

N

∑
i=1

∂G(x, yi)
∂n

u(yi) − G(x, yi)
∂u(yi)

∂n



Monte Carlo estimator for BIE
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Δu = 0 on Ω

∂u
∂n

= h on ∂ΩN

u = g on ∂ΩD
x

y

Ω

!"#$"

Monte Carlo estimator for BIE

Δu = 0 on Ω y !"#$"

u = g on ∂ΩD

known estimate

̂u (x) =
|∂Ω |

N

N

∑
i=1

∂G(x, yi)
∂n

g(yi) − G(x, yi)
∂ ̂u(yi)

∂n



Monte Carlo estimator for BIE
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Δu = 0 on Ω

∂u
∂n

= h on ∂ΩN

u = g on ∂ΩD
xy

Ω

!"#$"

Monte Carlo estimator for BIE

Δu = 0 on Ω
!"#$"

∂u
∂n

= h on ∂ΩN

̂u (x) =
|∂Ω |

N

N

∑
i=1

∂G(x, yi)
∂n

u(yi) − G(x, yi) h(yi)u(yi) h(yi)

knownestimate



Monte Carlo estimator for BIE

238

Monte Carlo estimator for BIE

̂u (x) =
|∂Ω |

N

N

∑
i=1

∂G(x, yi)
∂n

̂u (yi) − G(x, yi)
∂ ̂u(yi)

∂n

x0

x1
x2

can reuse boundary estimates 
at any point in domain

i.e., can estimate many integrals 
with one set of estimates



Normal derivative estimation

239

∇xu(x) =
1

|B | ∫∂B
u(y) v(y) dy

Spatial derivative inside ball:

du(x)
dnx

= nx ⋅ ∇xu(x)

Normal derivative on boundary:

Dirichlet Dirichlet o!set boundaryNeumann

o!set regionsample reuse region ε-shell

[Sawhney & Crane 2020]

v(y)
normal



Boundary Value Caching (BVC)

240

generate samples 
on boundary ∂Ω

use WoSt to 
estimate  & u

du
dn

evaluate BIE 
inside domain Ω

xxxxxx

simple to implement

trivial to parallelize

progressive 



Suppressed noise (due to correlation)

Improved run-time efficiency  (sharing global information)

boundary value caching walk on stars

Benefits of BVC

241



Gradient estimates with BVC

242

Can reuse same boundary cache for gradients!



Source term

243

Generate cache samples for source values    inside domain:  
no random walks needed 

f

Δu = f on Ω



Stratification

244



Output sensitivity with BVC

245

Can focus computation in local regions of interest



Error and convergence

246

reference

0 0.5

Neumann

Dirichlet

1000 samples100 samples10 samples10 samples 1000 samples100 samples100 samples100 samples10 samples

so
lu

tio
n

er
ro

r

0 0.1

more boundary samples
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Decades worth of strategies can be applied to PDEs:

mathematical finance

stochastic control

rendering
Markov chain Monte Carlo

control variatesoptional samplingneural denoising 

reinforcement learning

quasi Monte Carlo stratified sampling
low-discrepancy sampling

blue noise sampling
path guiding

Just the tip of the iceberg…



Importance sampling of Green’s function & source term

̂I =
1
N

N

∑
i=1

f(Xi) G(Xi)
p(Xi)

248

f(x)G(x doesn’t help much
to sample here…

p ∝ f

Sampling point, curve & area sourcesSamples drawn from Green’s function of ball

p ∝ G



Weight window for variable coefficient PDEs

249Sawhney et al., “Grid-free Monte Carlo for PDEs with spatially varying coefficients”, SIGGRAPH 2022

Probabilistically terminate low-contribution random walks to improve efficiency

Probabilistically split high-contribution random walks with for better exploration



Kelvin transform for exterior problems

250

exterior problem

Nabizadeh et al., “Kelvin Transformations for Simulations on Infinite Domains,” SIGGRAPH 2021

interior problem

Invert via 
Kelvin transform



Kelvin transform for exterior problems

251
(electrostatic potential on 1CRN protein)

Application: force evaluation for molecular dynamics simulation

RUSSIAN 
ROULETTE

KELVIN 
TRANSFORM



Bidirectional walk on spheres

252

Key idea: start at source points, estimate Green’s function at sensor points

Qi, Seyb, Bitterli, Jarosz, “A Bidirectional Formulation for Walk on Spheres,” EGSR 2022

source terms bidirectional WoS

regular WoS 



Sample reuse via Mean Value Caching

253Bakbouk & Peers, “Mean Value Caching for Walk on Spheres,” EGSR 2023

volumetric mean value property

u(x) =
1

|B(x) | ∫B(x)
u(y) dy



Neural Caches

254

Li, Yang, Deng, De Sa, Hariharan, Marschner, 
“Neural Caches for Monte Carlo Partial Differential Equation Solver,” SIGGRAPH Asia 2023

Key idea: Terminate walks early by training network to predict solution



Long walk lengths

255

Reflecting

Absorbing

WoSt Avg # Steps: 219Ray Tracing Avg # Steps: 240

walk origin
termination

Reflecting

Absorbing

Takeaway: Variance reduction strategies targeting 
complimentary aspects of an MC estimator can be
seamlessly combined.
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PART6:  
Evaluation, Recent & Future work
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Summary

Presented emerging class of grid-free 
MC methods for PDEs based on WoS

WoS reframes PDE as integration problem,
and uses random sampling

Not always the right tool for the job!

WoS inherits many advantages of Monte Carlo rendering
(scalable with geometric complexity, parallelism, output sensitive, …) 





Monte Carlo is dumb, but it just works!



Traditional approach to PDE-based analysis

260



Monte Carlo approach to PDE-based analysis

261



Comparison with conventional solvers

262

!"#!"#!"#!"#



Finite Element RadiosityMonte Carlo Ray Tracing
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https://www.cs.cmu.edu/afs/cs/project/classes-ph/860.96/pub/www/montecarlo.mail

From: cn1@irz301.inf.tu-dresden.de (Nguyen, D.C.)
Subject: What's wrong w/ Monte-Carlo methods?
To: globillum@imag.fr (Global Illumination List)
Date: Mon, 28 Oct 1996 15:50:34 +0200 (MESZ)

I often ask myself : Monte-Carlo ray-tracing, is this the way to do globillum in the 
future? After reading a lot of papers aboud MC-methods, i still get confused w/ their 
terminologies. I can't see any advantage of these methods over traditional methods 
(radiosity), except the fact that meshing is not needed…

From: shirley@facility.cs.utah.eduSubject: Re: What's wrong w/ Monte-Carlo methods?To: cn1@irz301.inf.tu-dresden.de (Nguyen D.C.)Date: Mon, 28 Oct 1996 08:31:22 -0700 (MST)Cc: globillum@imag.fr, shirley@facility.cs.utah.edu (Peter Shirley)
…In summary, pure MCPT has only two advantages-- it is so dumb that it doesn't get hit by big scenes, and it is easy to implement.

https://www.cs.cmu.edu/afs/cs/project/classes-ph/860.96/pub/www/montecarlo.mail


http://www.incompleteideas.net/IncIdeas/BitterLesson.html

“One thing that should be learned from the bitter lesson is the great power of 
general purpose methods, of methods that continue to scale with increased 

computation even as the available computation becomes very great.”

http://www.incompleteideas.net/IncIdeas/BitterLesson.html


Monte Carlo Geometry Processing

266

Sawhney & Crane
SIGGRAPH 2020 Sawhney*, Seyb*, 

Jarosz!, Crane!

SIGGRAPH 2022
Miller*, Sawhney*,

Crane!, Gkioulekas!
SIGGRAPH 2023

Sawhney*, Miller*,
Gkioulekas!, Crane!

SIGGRAPH 2023

Introduce WoS to graphics & generalize it to solve larger class of PDEs

Monte Carlo Geometry Processing

Sawhney & Crane
SIGGRAPH 2020

Introduce WoS to graphics & generalize it to solve larger class of PDEs

Sawhney*, Seyb*, 
Jarosz!, Crane!

SIGGRAPH 2022

Introduce WoS to graphics & generalize it to solve larger class of PDEsIntroduce WoS to graphics & generalize it to solve larger class of PDEsIntroduce WoS to graphics & generalize it to solve larger class of PDEsIntroduce WoS to graphics & generalize it to solve larger class of PDEs

Sawhney*, Miller*,
Gkioulekas!, Crane!

SIGGRAPH 2023

Introduce WoS to graphics & generalize it to solve larger class of PDEsIntroduce WoS to graphics & generalize it to solve larger class of PDEs

Miller*, Sawhney*,
Crane!, Gkioulekas!

SIGGRAPH 2023
Miller*, Sawhney*,

Crane!, Gkioulekas!
SIGGRAPH 2024

266

Introduce WoS to graphics & generalize it to solve larger class of PDEsIntroduce WoS to graphics & generalize it to solve larger class of PDEs

Miller*, Sawhney*,
Crane!, Gkioulekas!

SIGGRAPH 2024
* and ! denote equal contribution 
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Rioux-Lavoie et al, “A Monte Carlo Method for Fluid Simulation” (SIGGRAPH Asia 2022)
Sugimoto et al, “Velocity based Monte Carlo Fluids” (SIGGRAPH 2024)
Jain et al, “Neural Monte Carlo Fluid Sim” (SIGGRAPH 2024)

Monte Carlo fluid simulation
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Monte Carlo Infrared Imaging

WoS ↔ thermal conduction

Path tracing ↔ thermal radiation

“Coupling Conduction, Convection and Radiative Transfer in a Single Path-Space: Application to Infrared Rendering”
Bati, Blanco, Coustet, Eymet, Forest, Fournier, Gautrais, Mellado, Paulin, Piaud, SIGGRAPH 2023



Differentiable solvers for PDE-based shape optimization

Goal: recover shape given measurements, e.g., temperature, electric potential

269
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Integrated Circuits Design
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Agent path planning

Credit: Ryan Schmidt
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Next Steps

— High-performance GPU implementation (coming soon!) 
— Variance reduction: denoising & supersampling

Research   Production →

“Real-world” applications
— exploit unique capabilities of Monte Carlo

Extend WoS to more physical problems
— Heat, Helmholtz & wave equations, anisotropic diffusion, linear elasticity
— Multi-physics: couple conduction, radiation, convection
— Differentiability
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Resources for further learning

END.

Physically based rendering (PBRT)

Monte Carlo Methods and Applications (CMU)

Stochastic Differential Equations (Oksendal)

Rohan’s PhD Thesis

Slides are available online

https://pbrt.org
https://gi1242.codeberg.page/cmu-math-cs-mcm/
http://www.stat.ucla.edu/~ywu/research/documents/StochasticDifferentialEquations.pdf
http://rohansawhney.io/RohanSawhneyPhDThesis.pdf
https://github.com/rohan-sawhney/mcgp-resources/tree/main
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BACKUP



Comparison with conventional solvers

Meshless FEM solvers also do not require a volume mesh

39

Typical FEM sparse matrix
(~25k vertices a er reordering)

Typical Meshless FEM sparse matrix
(~25k nodes a er reordering)

~5x more fill
relative to FEM

39

Typical FEM sparse matrix
(~25k vertices a er reordering)

Typical Meshless FEM sparse matrix
(~25k nodes a er reordering)

~5x more fill
relative to FEM

• Require dense sampling of 
the entire domain

• Require solving large 
linear systems
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Meshless FEM is unreliable

Solvers have unpredictable convergence under refinement

WoS (delta tracking)

O(h)

O(h2)

~10,000x

~10,000x

O(h)

O(h2)

~100,000x

~100,000,000x

~1,000,0000x

~100,000,000,000,000x
Meshless FEM (Weighted Least Squares)

node spacing h node spacing h 

Re
du

ct
io

n 
in

 l2
 e

rr
or

Re
du

ct
io

n 
in

 l2
 e

rr
or

O(h)

O(h2)

Meshless FEM (RBF-FD w. polynomial augmentation)

Mesh-based FEM

Re
du

ct
io

n 
in

 l2
 e

rr
or

node spacing h # walks n

Re
du

ct
io

n 
in

 R
M

SE

WoS (delta tracking)

Meshless FEM (Weighted Least Squares)

node spacing h node spacing h 

Re
du

ct
io

n 
in

 l2
 e

rr
or

Re
du

ct
io

n 
in

 l2
 e

rr
or ~10,000x

~10,000x

O(h)

O(h2)

~100,000x

~100,000,000x

Meshless FEM (RBF-FD w. polynomial augmentation)

O(h2)

O(h)

Mesh-based FEM

Re
du

ct
io

n 
in

 l2
 e

rr
or

node spacing h # walks n

Re
du

ct
io

n 
in

 R
M

SE

Tested on 10k models from the Thingi10k dataset
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Meshless FEM is unreliable

Walk on spheres converges predictably

WoS (delta tracking)

Meshless FEM (Weighted Least Squares)

node spacing h node spacing h 

Re
du

ct
io

n 
in

 l2
 e

rr
or

Re
du

ct
io

n 
in

 l2
 e

rr
or

Meshless FEM (RBF-FD w. polynomial augmentation)

Mesh-based FEM

Re
du

ct
io

n 
in

 l2
 e

rr
or

node spacing h 

~2x

O(1/ n)

# walks n

Re
du

ct
io

n 
in

 R
M

SE
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Meshless FEM is unreliable

Solvers are difficult to tune

n = 24n = 18n = 12Reference

RBF-FD 2nd order (4k uniformly distributed nodes)

Reference n = 12 n = 18 n = 24 

4k uniformly distributed nodes

neighborhood size n

l2
 e

rr
or
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Aliasing of boundary conditions

Monte Carlo decouples boundary conditions/coefficients from geometry

279

boundary data reference

Experiment: solve screened Poisson equation w/ high-frequency boundary data

walk on spheres

125 walks

FEM

2k vertices

meshless FEM

2k nodes125 walks 2k vertices

exact solution on
average—even for N=1

𝔼[IN] = I



Aliasing of boundary conditions

Monte Carlo decouples boundary conditions/coefficients from geometry

280

boundary data reference

Experiment: solve screened Poisson equation w/ high-frequency boundary data

walk on spheres

500 walks

FEM

20k vertices

meshless FEM

20k nodes500 walks 20k vertices

exact solution on
average—even for N=1

𝔼[IN] = I



Aliasing of boundary conditions

Monte Carlo decouples boundary conditions/coefficients from geometry

281

boundary data reference

Experiment: solve screened Poisson equation w/ high-frequency boundary data

walk on spheres

1k walks

FEM

200k vertices

meshless FEM

200k nodes1k walks 200k vertices

exact solution on
average—even for N=1

𝔼[IN] = I
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PINNs specialize to PDE dynamics, geometry, and boundary/initial conditions

Physically Informed Neural Networks (PINNS)
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AI based denoising for rendering


