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Goals: learn about

o what neural implicits are

o how & when to use them

» important techniques for
working with them
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Implicit functions: defintion

IMPLICIT

x2+y2=r
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EXPLICIT

J(@®) = (1,1)t

t € [0,1]
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Implicit functions: defintion BACKGROUND & HISTORY

IMPLICIT
f,y): R* > R
flx,y) = x* +y* = r
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c-Level Sets

. surface defined by set of
points where fis equal to ¢

Jx,y) =c
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c-Level Sets

. surface defined by set of
points where fis equal to ¢

o typically, zero-level set is
treated as the surface

N\




IMPLICIT SURFACES
BACKGROUND & HISTORY

Implicits in early graphics history

A constructive geometry for computer graphics

A. Ricci
CNEN Centro di Calcolo, Via Mazzini 2, Bologna, Italy ‘\‘
]
& N
.
In the present paper a general approach to the definition of complex 3D objects from simpler ones ‘\
is illustrated. Intersection and union operations are defined which can be approximated to obtain S>1 0\
a smooth joining of object volumes with one another. i . )
2 /

(Received February 1972)

The representation of the shape of a 3D object in terms of
numerical information stored in the computer memory, gene-
rally by means of a suitable data structure, is still an impor-
tant problem in computer graphics.

In the techniques for object representation till now developed
(see references), the information stored in the data structure
generally relates to the definition of the object surface, often

lack of a smooth joining of object volumes with one another.
A certain degree of smoothing has been obtained in a par-
ticular technique for the detection of intersections of 3D
objects (Comba, 1968), but this method apparently does not
apply to non-convex objects.

. . . . i E33 ‘ . . . f . .
subdivided in surface patches, thus requiring, unless the object w?llcl;)cengﬁll:e Zu: £:g§ELOHf£ r(lf:t)i,o‘r:ofgrnzézﬁ‘c;esﬂi); ;Zf;ip llgvli 5 quation for the solid S7 is intersection and union operations are themselves differentiable. 1
shape is simple, a large amount of data to define surface points, g T f(P) =1 (7) In both cases, an approximation may require that defining 5
e o . . . P belongs to I, f(P) = 1 when P belongs to B and f(P) > {* > Jn . L 2
continuity conditions, etc. This gives rise to a certain degree of when P belon, s to T. For any given solid. many differen functions be everywhere positive in E3. 2
uneasiness in the modification of the object shape, particularly ;. - func[iins can be fou;{dgfor example if )}(P) ire : on of the three infinite slabs with Meeting the last condition is by no means a real difficulty. In g 15
when extensive changes are required, as frequently happens in deﬂning function for the solid Sal,so ((PYP gein a os':’ g fact, a small positive quantity ¢ can be added to a defining tions and U,, U, and U unions of two spheres 3 5
the early stages in the design process. real nu%n ber. is a defining function for S ’ 2P a post 1vo ] 5 function to remove zeroes. The quantity & can be chosen so as 3 g:_
The approach to the representation and manipulation of 3D An interest,ing propert yg of defining fu;lctions as they havé I Exx gz g not to alter significantly the solid defined by the function. bi-dimensional defining functions 4,(P) is generated, with Pe E’-% @
objects by means of their global definition as solids seems tobe oo ooy ced above, is that if f(P) is a defining function fof - yir ®  For example, adding 10* to the defining function (3) will give By plotting lines satisfying the boundary equations 2 g
more natural and promising. The technique of the definition of . 1 . . g . § i@l rise to a modification of the sphere radius of about 0-05 per & 3
. . - the solid S, (f(P))~ " is a defining function for the solid coms : H(P)=1 (21§ ES
complex objects in terms of simpler ones has been attempted plement S€ as defined by I = T, B = B, and T€ = I. S ation cent. with i 8 S
(for example, Goldstein and Nagel, 1971) but, while less i 0 L S @) =1 ) A large variety of sequences of approximating functions can . . <
information needs to be handled, the component objects s(ﬁ;:ioglernzielglﬂ dtifei:n:l?xl;tliixtlh?}tl:tf it:es;:‘i;fi?:g ebquzzltll:n fqr tg cube centred at the origin of the be used, but only one way of approximating max and min [t bi-dimensional profile H_I(IZ]) - h‘(P)h P (22§ §
retain their individuality in the final shape by reason of the > Yy q Y pointg e functions will be illustrated in the present paper. The approxim- Hiiy(P) = U (H(P), hir1(P)) 5 s
g,
o
5
8
3
8
3
3

E? is considered, it is intended that it can be connected or
disconnected, that is to say it can comprise one object or more
objects separated from one another. All the results obtained
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here apply to this general definition of a solid.

For any solid S, the set of its interior points will be denoted,
by I, the set of its boundary points by B and the set of it€
exterior points by 7, with §_,

IUBUT=E? ag
InNB=BnT=InT=¢ =

S

belonging to B. For any solid S with f(P) as a defining function®
the surface equation is @
) =1 @

As an example, for a sphere having the radius r and its;
centre at the origin of the reference system, a possible deﬁning\:}'
N

LG¥TC!

unit, P belongs to T; and, for (5), P also belongs to T, If
fI(P) < 1, all f(P) are lower than unit and P belongs to every
I; and, for (6), P belongs to I'. In the remaining case, if
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f the surface equations max(f,, f;)=1and min (£}, f;) = 1

greater than unit and P cannot
P) is not lower than unit and P
relongs to the complement of the
o Bl

..., S, respectively have defining
1en a defining function of their

[ intersection and union

f component solids into a final
ust be approximated by means of

suitable functions depending on a parameter which can be used
to control the degree of smoothing. In addition, differentiable
approximating functions can be used to avoid possible difficul-
ties in computation due to the undifferentiability of max and
min functions, provided that defining functions involved in the

ating functions chosen to be substituted for max and min
functions here are respectively

Lfi, - f) =2+ ...+ fplr (16)
Upfio oS = F30+ o+ 70710

sphere centred at the origin of the reference system and having
a radius r can be obtained from the defining functions (8) by
means of their approximated intersection I,. Generally, an
intersection solid approximated according to a given value of
the parameter p is interior to the intersection solid approxim-

20z AeN 8z uo Jesn Aysienun uojis | @1bauie Aq 9v22/€/251/2/91/2101Me/|ulwoo/wod°dnoolwapese)/:sdpy Woly papeojumoq

+ value of the parameter, while for
pposite behaviour is experienced

, in this case a bi-dimensional one,
fig. 3 has been obtained through

| which has the same characteristics
1e. All of the results here obtained
2. In Fig. 4, a few sections of an
i drawn by a low precision plotter.
roved statements are valid for E2

"The representation of the shape of a 3D object in terms of
numerical information stored in the computer memory |(...] is
still an important problem in computer graphics."

Ricci, "Constructive Geometry for Comp

Early use of implicit functions

a view with hidden points removed is obtained, as exemplifie®
by Fig. 5. 3

A perspective representation can be easily realised by suitablys
mapping the original E* space into a new one (Ricci, 1971E
with no change needed in the structure of the solid definings

Fig. 4. Sections of a constructed aircraft model

159

in graphics:

uter Graphics”

ints removal in constructed solids

geometry
constructive geometry illustrated

fication of numerical parameters can be directly effected and
does not require any compilation.

The Computer Journal

(1973)

In the present paper, a general approach to the solution of the ~ function is 5 (P, ... [LP) (10)  where p is a positive real number. o and union operations applied to  function. @  sed in the form of an interactive Since the IBM 2250 display unit is of the image refreshing 3.
problem, through what can be called a constructive geometry, (P) = (x[r)* + (Jr)? + (zfr)? ¥ To prove that I, and U, can be used as p-approximations of reral form exp (ax + by + c), each >  real-time design of solid objects.  type, the program is limited by the unit buffer size to display =
is presented. ) ) ) and f(P) = 1 will define the surface of the sphere. n:f b...ul, an respecl:welljy max and min functions, the following statements ane determined by the numerical S~ Y aneeded to dpﬁne solids is carried on.ly one sectign of the constructed object at a time, the section g

For any solid, connected or disconnected, in the 3D space a 2 B AT 12 must be shown to be true. and c. / g g few numerical parameters, con- being interactively chosen by the operator and computed by a [
set of associated functions is defined. Functions relating to 3 yntersection and union operations % S a2 ) s iolid defining function need not be / §  :nge to the development of inter-  contour-mapping routine. When a representation of the con- &
different objects can be combined to obtain a new function T, establish a really useful constructive geometry in computet nplement of IV U T Statement 3—For any point PeE?>, can be furnished to a computer | § olic formula manipulation and  structed solid as a line drawing with hidden points removed is =
representing a new solid, allowing the designer to define it by graphics, we need operations, allowing simple objects to bg ¢ fi(P) is lower than unit and P lim I(f,....f) = max(fy,.. .. f,) =1, 17) tble or a subprogram, thus permit- pad wanted, the program produces it through a digital plotter. 3
means of a small amount of information. The combination of suitably ’combined into more c'omplex ones, which will be easy: 1), to IV, If fY%P) > 1, all f(P) oo ssibility of definition of a whatever PO present paper (Figs. 2 to 5 are As far as computation times are concerned, the time required %
solids can be realised by applying a suitable sequence of inter- ;4 Hatural. Most conveniently, the said combination of solidg elongs to every T; and, for (12), T_o prove the statement, we obsprve that, for any PeE3, the vhen the solid shape must satisfy g 1mplemen_ted in tl_le form of an to compute a section of even a complicated object is within few, &
section and union operations. The operations in the SEQUENCE  can be realised by applying a sequence of intersection and unios, YU(P) = 1, no f,(P) can be lower uniform norm | f] ﬂu'o gf Cartesian space R" of elements ints, the effects of which could be | a M 2250 display unit su_pported_by .rarely more than five, seconds, which does not give rise to an o
can be .approx.mmted,. namely substituted .fqr b}f operations operations. They can be defined in terms of defining function\g g to 1Y, at least one fi(P) is not f=(f1» f25 . . 1) is given by nction sub-program. _ — % In_ this program, solid 'deﬁnmg intolerable delay in the display response. °
which give a slightly different result, thus giving rise to a con- 14 the following two statements will show how the defining ¢ belong to T, then P belongs to lim |Ifl, = Ifll. (18) sontrol over the shape of the con- E%_ (\‘5§>__g sction and union operations are 3
trolled smoothing of matching volumes and surfaces. By  gnction for the resulting solid can be derived from those fog  Oof 1Y and TY, namely to B, pow fly available, sharply defined and S _._;-:;_.// § N subprograms which can be  Acknowledgement &
suitably regulating the smoothing parameter, in the final solid e component solids. ~  Juation for the solid SY is where | f]|, is the space p norm (Davis, 1963). Since f; > 0 be obtained with a suitable choice e ¢ piled on-line. Most conventional ~ The author is grateful to G. Casadei and A. Teolis for helpful z
the component ones may not even be recognisable. g o fiAP) =1 13) (=12..,n, Ifl, =L, fo ... f) and |f], = max jproximated intersection and union i < ltions are available and the modi-  discussions on the contents of the present paper. )

Since solids in the geometry illustrated here can be discon-  g/u/omens 1—Let n solids S, . . ., S, respectively have defining "% (f1> f25 - - » ;) and (17) is equivalent to (18) and thus proved. e g S
nected, a function defining a collection of separate objects can  fynctions £,(P), . . ., £.(P). Then a defining function of thei S . . ) e = 5
:g“]’e:’:‘)“:z ?I;l;lllez (3) ‘ljllltt‘lz‘:l’;i?tl;l‘i gle;i;;:i gli':t‘;t;‘):;sbll:;da;}:f r:(; intersectioﬁ 1(is )g o jb;y( ) g ’§ he two infinite slabs with defining Statemenlt' 4—For any point PeE®, : solid surface and the removal of , - g % dure for detecting intersections of three-dimensional objects, JACM, Vol. 15, pp. 354-366. g

! = - e 3 -Qi 7 - 3

serious difficulty arises from the implicit, i.e. non-parametric, S(P) = max (fy(P), ..., /u(P)) @  -a 3"): (14) pl—?:o Ui - Vv S =min (/- fi) = Ua (19 equation (2), a large number of \ e » ﬁ:::;n Z:;izg;r‘f:eaiiiil%’;a'i’{dsg?cl’el{&ri’s’}';;?éi ’Nhg\? 2'(};11:-4 " E
form of the equation satisfied by the points of the object To prove the statement, we firstly note that - a)/3a) To prove the statement, it is now sufficient to observe that, used to graphically represent the \\, /‘/ = iand surfaces for computer aided design, Cambridge Computer-Aided Design Group, Thesis, July 1968. 2
surface, provided that efficient contour mapping techniques are T'=T,u...uT, ©) letting f; be the solid complement defining functions f; = fi~1, N P%(IS:}I). 3-D Visual simulation, Simulation, January 1971, pp. 25-31. S
used to compute paths on the surface. 1_ 2y — P - le to cut sections of the solid on S of surfaces for computer display, AFIPS Proc. SJCC, 1969. &
pute p: / , I'sILin...n ]n’ , © (& + “){3") ) =1 15) v _Up('fl’.fZ) oSy = [ip(fu VIR A . (20) rves on them satisfying the surface R nfor the removal of hidden lines in 3D scenes, The Computer Journal, Vol. 14, pp. 375-377. =

1. Preliminary definitions B! = complement of I' U T™. an infinite slab centred at the © = min (f{,fz, oo fo) = [max (fy, fo, - - o, )] ine, the solid reduces to a planar <
In the present paper, when a solid S in the 3D Euclidean space ~ Then f/(P) > 1 implies that at least one f}(P) is greater than and having a half-thickness of ~ Then statement 4 is proved by reason of statement 3. ted or disconnected, and a reduced S
As an example of application of the above statements, a *
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Jim Blinn’s “Blobby molecules” (1982)
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“soft objects”
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For more background on implicits, see Chapter 21 of Fundamentals of Computer Graphics
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IMPLICIT SURFACES: BIG IDEAS
1. Constructive Solid Geometry
2. Taxonomy of implicits

3. Rendering

4. Surface Extraction

13
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“outside!”

O

IMPLICIT SURFACES: BIG IDEAS O
1. CSG

2. Taxonomy of implicits

3. Rendering

4. Surface Extraction

14



Constructive solid geometry

difference

AUDB A-B

Intersection
ANRB

IMPLICIT SURFACES: BIG IDEAS

1. CSG
2. Taxonomy of implicits
3. Rendering

4. Surface Extraction

IMPLICIT SURFACES = BACKGROUND & HISTORY
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Constructive solid geometry

difference

AUDB A-B

Intersection
ANRB
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1. CSG
2. Taxonomy of implicits
3. Rendering

4. Surface Extraction

IMPLICIT SURFACES = BACKGROUND & HISTORY
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Constructive solid geometry

difference

AUDB A-B

Intersection
ANRB

IMPLICIT SURFACES: BIG IDEAS

1. CSG
2. Taxonomy of implicits
3. Rendering

4. Surface Extraction

IMPLICIT SURFACES = BACKGROUND & HISTORY
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Constructive solid geometry

Modeling with implicits

union difference
Intersection
N
. e
IMPLICIT SUREACES: BIG IDEAS Complex shapes from simple primitives!
1. CSG

2. Taxonomy of implicits
3. Rendering
4

Surface Extraction [1] For more amazing implicit function art, see Inigo Quilez’s blog

Video: Inigo Quilez 18
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IMPLICIT SURFACES: BIG IDEAS

1. CSG
2. Taxonomy of implicits

3. Rendering
4. Surface Extraction

IMPLICIT SURFACES = BACKGROUND & HISTORY

-

! function

implicit

S

¥
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Indicator Function

) = —1 X € shape
Jlx) = 1 X & shape

IMPLICIT SURFACES: BIG IDEAS

1. CSG
2. Taxonomy of implicits

3. Rendering
4. Surface Extraction
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IMPLICIT SURFACES: BIG IDEAS

1. CSG
2. Taxonomy of implicits

3. Rendering
4. Surface Extraction
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! function

implicit

S

¥
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\\

Signed Distance Function

« |f(x)| encodes distance to
closest point on surface

IMPLICIT SURFACES: BIG IDEAS

1. CSG
2. Taxonomy of implicits

3. Rendering
4. Surface Extraction
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Signed Distance Function

« |f(x)| encodes distance to
closest point on surface

/f(x)

N
fx) ©
IMPLICIT SURFACES: BIG IDEAS
1. CSG ,
2. Taxonomy of implicits —_Ay) 5

3. Rendering
4. Surface Extraction
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Signed Distance Function

« |f(x)| encodes distance to
closest point on surface

20

10

/f(x)

flx) O

IMPLICIT SURFACES: BIG IDEAS

1. CSG
2. Taxonomy of implicits —f(y) C

3. Rendering
4. Surface Extraction
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Signed Distance Function

« |f(x)| encodes distance to
closest point on surface

20

X
. o 1o
/ 1 — Xl =1
fx) O
eikonality | ]
IMPLICIT SURFACES: BIG IDEAS s
1. CSG ‘ Vi) | =1
2. Taxonomy of implicits " 4
3. Rendering J(¥) C

4. Surface Extraction
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IMPLICIT SURFACES: BIG IDEAS

1. CSG
2. Taxonomy of implicits
3. Rendering

4. Surface Extraction

0

0.7
—

surface offset

IMPLICIT SURFACES = BACKGROUND & HISTORY

Signed Distance Function

« |f(x)| encodes distance to
closest point on surface

- makes many tasks way easier ©

—e+ e.g., Offset surfaces, distance

|
checks for simulation, etc.

26



Surface normals (V)

IMPLICIT SURFACES: BIG IDEAS

1. CSG
2. Taxonomy of implicits
3. Rendering

4. Surface Extraction

Mean curvature (Af)

IMPLICIT SURFACES = BACKGROUND & HISTORY

Signed Distance Function

« |f(x)| encodes distance to
closest point on surface
- makes many tasks way easier ©
. e.g., offset surfaces, distance
checks for simulation, etc.
° e.g., geometric quantities
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Real-world “SDFs” [Takikawa et al., 2022]

IMPLICIT SURFACES: BIG IDEAS

1. CSG
2. Taxonomy of implicits
3. Rendering

4. Surface Extraction

IMPLICIT SURFACES = BACKGROUND & HISTORY

Signed Distance Function

« |f(x)| encodes distance to
closest point on surface
- makes many tasks way easier ©
. distance property is hard to
maintain @
* e.g., not preserved by most
editing operations
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Conservative SDFs

o (aka approximate SDFs)

« |f(x)]| is less than the distance to the

closest point on the surface

IMPLICIT SURFACES: BIG IDEAS

1. CSG
2. Taxonomy of implicits

3. Rendering
4. Surface Extraction

IMPLICIT SURFACES = BACKGROUND & HISTORY

-

implicit

functions
_

¥

conservative
SDFs

~

_J
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Conservative SDFs

o (aka approximate SDFs)
« |f(x)]| is less than the distance to the

closest point on the surface
. tradeoit between ease of maintaining

& having usetul properties

f

function
\_

implicit

S

IMPLICIT SURFACES: BIG IDEAS

¥

\_

conservative

SDFs

~

1. CSG
2. Taxonomy of implicits
3. Rendering .

4. Surface Extraction
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Sphere Tracing

o introduced by [Hart, 1996]
« technique to ray trace conservative SDFs

IMPLICIT SURFACES: BIG IDEAS
1. CSG
2. Taxonomy of implicits

3. Rendering
4. Surface Extraction

IMPLICIT SURFACES = BACKGROUND & HISTORY
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- Sphere Tracing

» introduced by [Hart, 1996]
« technique to ray trace conservative SDFs

~« | f(x)| is distance we can definitely travel
without crossing the surface

IMPLICIT SURFACES: BIG IDEAS
1. CSG
2. Taxonomy of implicits

3. Rendering
4. Surface Extraction

IMPLICIT SURFACES = BACKGROUND & HISTORY
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Sphere Tracing

» introduced by [Hart, 1996]
« technique to ray trace conservative SDFs

e |f(x)| is distance we can definitely travel
without crossing the surface

IMPLICIT SURFACES: BIG IDEAS
1. CSG
2. Taxonomy of implicits

3. Rendering
4. Surface Extraction

IMPLICIT SURFACES = BACKGROUND & HISTORY
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draw surface in each of these voxels

CSG
2. Taxonomy of implicits

» introduced by [Lorensen & Cline, 1987}
3. Rendering

« identify voxels with surface present,

IMPLICIT SURFACES: BIG IDEAS

1.

5 Marching cubes

4. Surface Extraction

34
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O
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Reach For the Spheres:

-Aware Surface Reconstruction of SDFs
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IMPLICIT SURFACES

Implicit vs. explicit representations BACKGROUND & HISTORY

« answer questions about surface

IMPLICIT EXPLICIT

 answer questions about points in

space . e.g., what is the total surface
e e.g., is this point inside the area
surface?

J v
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Implicit vs. explicit representations BACKGROUND & HISTORY

« answer questions about surface

IMPLICIT EXPLICIT

 answer questions about points in

space . e.g., what is the total surface
e e.g., is this point inside the area
surface? « often faster, often want to

operate directly on surface, ...
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 watertight, easy CSG, ...
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IMPLICIT SURFACES

Implicit vs. explicit representations BACKGROUND & HISTORY

in implicit representations, topology changes are
continuous (very useful for inverse tasks!)

[teration O

Video: “Differentiable Signed Distance Function Rendering,” Vicini et al., 2022 39



IMPLICIT SURFACES

Implicit vs. explicit representations BACKGROUND & HISTORY

marching cubes

IMPLICIT /\ EXPLICIT

 answer questions about points in  answer questions about surface
space e e.g., what is the total surface
e e.g., is this point inside the area
surface? « often faster, often want to

 watertight, easy CSG, ... \/ operate directly on surface, ...

distance computation
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IMPLICIT SURFACES

Analytic representations DIGITAL REPRESNTATIONS

rrss
flx,y) =x*+y? =1’
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Analytic representations

sdStar5(

k1 (
k2 (-kl.x,kl.y);
(p.x);

( (ki,p), ) *k13
(dot(k2,p),0.0)*k2}
(P.x)3

(-kl.y,kl.x) - (0,1)3

( (p,ba)/ (ba,ba), s )3
(p—baxh) x* (p.y*xba.x-p.x*xba.y);

« slow to compute complex formulas
. can't always find analytic representation

\

Code: Inigo Quillez

For analytic definitions of SDFs, see “Distance Functions” page on Inigo Quillez’s blog

IMPLICIT SURFACES
DIGITAL REPRESNTATIONS
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IMPLICIT SURFACES

Grid-based representations DIGITAL REPRESNTATIONS




IMPLICIT SURFACES

Grid-based representations: just a function! DIGITAL REPRESNTATIONS

foey) = (Lx) =0 & [y = 0) o+ (L] =1 & [y] =0) w;;+ ...
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IMPLICIT SURFACES

Generalization: any function space DIGITAL REPRESNTATIONS

Degree 0

f(.x, y) — Wn’oxn + Wn_l,l.xny + ...+ WO,ly + W0,0
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NEURAL IMPLICITS

Neural networks are a function space THE BASICS

fo: R" =5 R
fox) = AYp(Ajp(A)x + by) + by + ...) + by

[1] For an intro to Neural Networks, see the course “6.036 Intro to ML” on OCW
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NEURAL IMPLICITS

Neural networks are a function space THE BASICS

fo: R" =5 R
fox) = A p(A p(A)x + b)) + by + ...) + b

linear layer

[1] For an intro to Neural Networks, see the course “6.036 Intro to ML” on OCW
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Neural networks are a function space

Jox) = A, gp(A »(A x+bg) 'I'bel +

non-linearity/activation function

RelLU

fo: R" > R

A

\4

SIGMOID

)+ by

TANH

[1] For an intro to Neural Networks, see the course “6.036 Intro to ML” on OCW

NEURAL IMPLICITS
THE BASICS
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NEURAL IMPLICITS

Neural networks are a function space THE BASICS

fo: R" > R
MLP
fo(x) = A p(Agp(Agx + by) + by + ...) + by

output layer input layer

hidden layers
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NEURAL IMPLICITS

Neural networks are a function space THE BASICS

fo: R" =5 R
fox) = AYp(Ajp(A)x + by) + by + ...) + by

Key idea: neural networks provide a
space of functions with parameters 0



Early work on neural implicits
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Occupancy Networks: Learning 3D Reconstruction in Function Space
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Abstract

With the advent of deep neural networks, learning-based
approaches for 3D reconstruction have gained popularity.
However, unlike for images, in 3D there is no canonical rep-
resentation which is both computationally and memory ef-
ficient yet allows for representing high-resolution geometry
of arbitrary topology. Many of the state-of-the-art learning-
based 3D reconstruction approaches can hence only repre-
sent very coarse 3D geometry or are limited to a restricted
domain. In this paper, we propose Occupancy Networks,
a new representation for learning-based 3D reconstruction
methods. Occupancy networks implicitly represent the 3D
surface as the continuous decision boundary of a deep neu-
ral network classifier. In contrast to existing approaches,
our representation encodes a description of the 3D output
at infinite resolution without excessive memory footprint.
We validate that our representation can efficiently encode
3D structure and can be inferred from various kinds of in-
put. Our experiments demonstrate competitive results, both
qualitatively and quantitatively, for the challenging tasks of
3D reconstruction from single images, noisy point clouds
and coarse discrete voxel grids. We believe that occupancy
networks will become a useful tool in a wide variety of
learning-based 3D tasks.

1. Introduction

Recently, learning-based approaches for 3D reconstruc-
tion have gained popularity [4,9,23,58,75,77]. In contrast
to traditional multi-view stereo algorithms, learned models
are able to encode rich prior information about the space of
3D shapes which helps to resolve ambiguities in the input.

While generative models have recently achieved remark-
able successes in generating realistic high resolution im-
ages [30,47,72], this success has not yet been replicated
in the 3D domain. In contrast to the 2D domain, the com-

TPart of this work was done while at MSR Cambridge.
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Figure 1: Overview: Existing 3D representations discretize
the output space differently: (a) spatially in voxel represen-
tations, (b) in terms of predicted points, and (c) in terms of
vertices for mesh representations. In contrast, (d) we pro-
pose to consider the continuous decision boundary of a clas-
sifier fy (e.g., a deep neural network) as a 3D surface which
allows to extract 3D meshes at any resolution.

munity has not yet agreed on a 3D output representation
that is both memory efficient and can be efficiently inferred
from data. Existing representations can be broadly cate-
gorized into three categories: voxel-based representations
[4,19,43,58,64,69,75] , point-based representations [ 1, 17]
and mesh representations [34,57,70], see Fig. 1.

Voxel representations are a straightforward generaliza-
tion of pixels to the 3D case. Unfortunately, however, the
memory footprint of voxel representations grows cubically
with resolution, hence limiting naive implementations to
323 or 64° voxels. While it is possible to reduce the memory
footprint by using data adaptive representations such as oc-
trees [61,67], this approach leads to complex implementa-
tions and existing data-adaptive algorithms are still limited
to relatively small 2563 voxel grids. Point clouds [1,17] and
meshes [34,57,70] have been introduced as alternative rep-
resentations for deep learning, using appropriate loss func-
tions. However, point clouds lack the connectivity structure
of the underlying mesh and hence require additional post-
processing steps to extract 3D geometry from the model.

4460
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DeepSDF: Learning Continuous Signed Distance Functions
for Shape Representation

Jeong Joon Park!3t

Peter Florence 237 Julian Straub®  Richard Newcombe®  Steven Lovegrove

3

"University of Washington ~ ?Massachusetts Institute of Technology ~ ®Facebook Reality Labs

Figure 1: DeepSDF represents signed distance functions (SDFs) of shapes via latent code-conditioned feed-forward decoder networks.
Above images are raycast renderings of DeepSDF interpolating between two shapes in the learned shape latent space. Best viewed digitally.

Abstract

Computer graphics, 3D computer vision and robotics
communities have produced multiple approaches to rep-
resenting 3D geometry for rendering and reconstruction.
These provide trade-offs across fidelity, efficiency and com-
pression capabilities. In this work, we introduce DeepSDF,
a learned continuous Signed Distance Function (SDF) rep-
resentation of a class of shapes that enables high qual-
ity shape representation, interpolation and completion from
partial and noisy 3D input data. DeepSDEF, like its clas-
sical counterpart, represents a shape’s surface by a con-
tinuous volumetric field: the magnitude of a point in the
field represents the distance to the surface boundary and the
sign indicates whether the region is inside (-) or outside (+)
of the shape, hence our representation implicitly encodes a
shape’s boundary as the zero-level-set of the learned func-
tion while explicitly representing the classification of space
as being part of the shapes interior or not. While classical
SDF’s both in analytical or discretized voxel form typically
represent the surface of a single shape, DeepSDF can repre-
sent an entire class of shapes. Furthermore, we show state-
of-the-art performance for learned 3D shape representation
and completion while reducing the model size by an order
of magnitude compared with previous work.

t Work performed during internship at Facebook Reality Labs.

1. Introduction

Deep convolutional networks which are a mainstay of
image-based approaches grow quickly in space and time
complexity when directly generalized to the 3rd spatial di-
mension, and more classical and compact surface repre-
sentations such as triangle or quad meshes pose problems
in training since we may need to deal with an unknown
number of vertices and arbitrary topology. These chal-
lenges have limited the quality, flexibility and fidelity of
deep learning approaches when attempting to either input
3D data for processing or produce 3D inferences for object
segmentation and reconstruction.

In this work, we present a novel representation and ap-
proach for generative 3D modeling that is efficient, expres-
sive, and fully continuous. Our approach uses the concept
of a SDF, but unlike common surface reconstruction tech-
niques which discretize this SDF into a regular grid for eval-
uation and measurement denoising, we instead learn a gen-
erative model to produce such a continuous field.

The proposed continuous representation may be intu-
itively understood as a learned shape-conditioned classifier
for which the decision boundary is the surface of the shape
itself, as shown in Fig. 2. Our approach shares the genera-
tive aspect of other works seeking to map a latent space to
a distribution of complex shapes in 3D [54], but critically
differs in the central representation. While the notion of an

I
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Learning Implicit Fields for Generative Shape Modeling
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Abstract

We advocate the use of implicit fields for learning gen-
erative models of shapes and introduce an implicit field de-
coder, called IM-NET, for shape generation, aimed at im-
proving the visual quality of the generated shapes. An im-
plicit field assigns a value to each point in 3D space, so
that a shape can be extracted as an iso-surface. IM-NET
is trained to perform this assignment by means of a binary
classifier. Specifically, it takes a point coordinate, along
with a feature vector encoding a shape, and outputs a value
which indicates whether the point is outside the shape or
not. By replacing conventional decoders by our implicit de-
coder for representation learning (via IM-AE) and shape
generation (via IM-GAN), we demonstrate superior results
for tasks such as generative shape modeling, interpolation,
and single-view 3D reconstruction, particularly in terms of
visual quality. Code and supplementary material are avail-
able at https://github.com/czql42857/implicit-decoder.

1. Introduction

Unlike images and video, 3D shapes are not confined to
one standard representation. Up to date, deep neural net-
works for 3D shape analysis and synthesis have been devel-
oped for voxel grids [19, 48], multi-view images [42], point
clouds [ !, 35], and integrated surface patches [17]. Specific
to generative modeling of 3D shapes, despite the many pro-
gresses made, the shapes produced by state-of-the-art meth-
ods still fall far short in terms of visual quality. This is re-
flected by a combination of issues including low-resolution
outputs, overly smoothed or discontinuous surfaces, as well
as a variety of topological noise and irregularities.

In this paper, we explore the use of implicit fields for
learning deep models of shapes and introduce an implicit
field decoder for shape generation, aimed at improving the
visual quality of the generated models, as shown in Fig-
ure 1. An implicit field assigns a value to each point
(2,y,%). A shape is represented by all points assigned to
a specific value and is typically rendered via iso-surface
extraction such as Marching Cubes. Our implicit field de-

Hao Zhang
Simon Fraser University

haoz@sfu.ca

o

L}
¥

!

Figure 1: 3D shapes generated by IM-GAN, our implicit
field generative adversarial network, which was trained on
64° or 128° voxelized shapes. The output shapes are sam-
pled at 5123 resolution and rendered after Marching Cubes.

coder, or simply implicit decoder, is trained to perform this
assignment task, by means of a binary classifier, and it has a
very simple architecture; see Figure 2. Specifically, it takes
a point coordinate (z,y, z), along with a feature vector en-
coding a shape, and outputs a value which indicates whether
the point is outside the shape or not. In a typical application
setup, our decoder, which is coined IM-NET, would follow
an encoder which outputs the shape feature vectors and then
return an implicit field to define an output shape.

Several novel features of IM-NET impact the visual
quality of the generated shapes. First, the decoder output
can be sampled at any resolution and is not limited by the
resolution of the training shapes; see Figure 1. More im-
portantly, we concatenate point coordinates with shape fea-
tures, feeding both as input to our implicit decoder, which
learns the inside/outside status of any point relative to a
shape. In contrast, a classical convolution/deconvolution-
based neural network (CNN) operating on voxelized shapes
is typically trained to predict voxels relative to the extent
of the bounding volume of a shape. Such a network learns

NEURAL IMPLICITS
THE BASICS

Scene Representation Networks: Continuous
3D-Structure-Aware Neural Scene Representations

Vincent Sitzmann  Michael Zollhéfer ~ Gordon Wetzstein
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Abstract

Unsupervised learning with generative models has the potential of discovering rich
representations of 3D scenes. While geometric deep learning has explored 3D-
structure-aware representations of scene geometry, these models typically require
explicit 3D supervision. Emerging neural scene representations can be trained only
with posed 2D images, but existing methods ignore the three-dimensional structure
of scenes. We propose Scene Representation Networks (SRNs), a continuous, 3D-
structure-aware scene representation that encodes both geometry and appearance.
SRNs represent scenes as continuous functions that map world coordinates to
a feature representation of local scene properties. By formulating the image
formation as a differentiable ray-marching algorithm, SRNs can be trained end-to-
end from only 2D images and their camera poses, without access to depth or shape.
This formulation naturally generalizes across scenes, learning powerful geometry
and appearance priors in the process. We demonstrate the potential of SRNs by
evaluating them for novel view synthesis, few-shot reconstruction, joint shape and
appearance interpolation, and unsupervised discovery of a non-rigid face model.!

1 Introduction

A major driver behind recent work on generative models has been the promise of unsupervised
discovery of powerful neural scene representations, enabling downstream tasks ranging from robotic
manipulation and few-shot 3D reconstruction to navigation. A key aspect of solving these tasks is
understanding the three-dimensional structure of an environment. However, prior work on neural
scene representations either does not or only weakly enforces 3D structure [1-4]. Multi-view
geometry and projection operations are performed by a black-box neural renderer, which is expected
to learn these operations from data. As a result, such approaches fail to discover 3D structure under
limited training data (see Sec. 4), lack guarantees on multi-view consistency of the rendered images,
and learned representations are generally not interpretable. Furthermore, these approaches lack an
intuitive interface to multi-view and projective geometry important in computer graphics, and cannot
easily generalize to camera intrinsic matrices and transformations that were completely unseen at
training time.

arXiv:1906.01618v2 [cs.CV] 28 Jan 2020

In geometric deep learning, many classic 3D scene representations, such as voxel grids [5-10], point
clouds [11-14], or meshes [15] have been integrated with end-to-end deep learning models and
have led to significant progress in 3D scene understanding. However, these scene representations
are discrete, limiting achievable spatial resolution, only sparsely sampling the underlying smooth
surfaces of a scene, and often require explicit 3D supervision.

'Please see supplemental video for additional results.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.
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DeepSDF
Park et al., 2019
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Occupancy Networks
Chen et al., 2019

Scene Rep. Nets.
Mescheder et al., 2019

[1] For more info on neural implicits, see Vincent Sitzmann’s course “ML for Inverse Graphics"

Sitzmann et al., 2019
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Function fitting for neural implicits THE BASICS
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In practice: SDF fit with pytorch THE BASICS

(nn.Module) :
__init__(self, num_layers, hidden_size):
().__init__()

self.layers = nn.ModulelList([nn.Linear (2, hidden_size), nn.ReLU()])

_ (num_layers-2):
self.layers.append(nn.Linear (hidden_size, hidden_size))
self.layers.append(nn.ReLU())

self.layers.append(nn.Linear (hidden_size, 1))
train(model, data_gen, loss_fn, steps=10000, step_size=0.001):

optim = torch.optim.Adam(model.parameters(), lr=step_size)

forward(self, inp):
out = 1np
3 tgdm( (steps)):
layer self. layers: pts, gts = data_gen()

out = layer(out)
pred model (pts)

out loss loss_fn(pred, gts)
loss.backward()
optim.step()

optim.zero_grad()

i % 100 == 0O:
tgdm.write(f'Step: {71}, loss: {loss}')

torch.save(model.state_dict(), './trained_model.pt")
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Question: is this a good function space?

WHY?
1. Representative ability
2. Adaptability

3. Trivially differentiable

Image: “SIREN,” Sitzmann et al., 2020 60



NEURAL IMPLICITS = WHY & WHY NOT

Question: is this a good function space?

Universal Approximation Theorem
| Hornik et al., 1989]
A MLP with one hidden layer of
infinite width and ReLU nonlinearities
can represent any continuous function

WHY?
1. Representative ability
2. Adaptability

3. Trivially differentiable

Image: “SIREN,” Sitzmann et al., 2020 61



NEURAL IMPLICITS = WHY & WHY NOT

f h

o Theory does not describe
infinite networks used in practice

.

WHY?
1. Representative ability
2. Adaptability

3. Trivially differentiable

Image: “SIREN,” Sitzmann et al., 2020 62



NEURAL IMPLICITS = WHY & WHY NOT

Neural implicits have the ability > N
to adaptively use parameters
« but this depends on the chosen

loss function!

—

\

Grid: 50x50 Neural Network: 4 layers, 34
hidden size
WHY? 2500 parameters 2414 parameters

1. Representative ability
2. Adaptability
3. Trivially differentiable
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Research into the why of neural
networks is still far behind practice.

64
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Neural implicits can easily be used to for
many problems requiring a differentiable
geometry representation

WHY?
1. Representative ability
2. Adaptability

3. Trivially differentiable
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Neural implicits can easily be used to for -
many problems requiring a differentiable y 2 |
geometry representation ’ N |

r

=

Single shot reconstruction [Sitzmann et

e

al., 2019]

WHY?
1. Representative ability
2. Adaptability

3. Trivially differentiable

66
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Neural implicits can easily be used to for
many problems requiring a differentiable
geometry representation

Latent space interpolation [Park et al., 2019]

WHY?
1. Representative ability
2. Adaptability

3. Trivially differentiable
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Neural implicits can easily be used to for
many problems requiring a differentiable
geometry representation

w
EE R
g " Bridge
Long Beam Distributed

WHY? Short Beam
1. Representative ability Topology Optimization [Zehnder et al., 2021]
2. Adaptability

3. Trivially differentiable
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Neural implicits can easily be used to for
many problems requiring a differentiable
geometry representation

( )

In general:

o inverse tasks
e learning from data
. integrate with ML toolbox

\ J

lllllllllllll

=] -
O m Dlstrlbuted Bridge
Long Beam

W H Y? Short Beam 2 1
1. Representative ability Topology Optimization [Zehnder et al., 20 ]

2. Adaptability
3. Trivially differentiable
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Properties hold only through soft losses

WHY NOT?
1. Imprecision

2. Editing (etc.) is difficult
3. The wrong representation

Image: “Fourier Features,” Tancik et al., 2020

NEURAL IMPLICITS = WHY & WHY NOT

Loss function: describes
problem to be solved, e.g.,

« SDF property
« reconstruction loss

mein Z(fp)

70



NEURAL IMPLICITS = WHY & WHY NOT

Properties hold only through soft losses
e can be difficult to quantity amount of error
« issue for application which require guarantees!
Loss function: describes

problem to be solved, e.g.,

« SDF property
« reconstruction loss

m@in Z(fo)

WHY NOT?

1. Imprecision
2. Editing (etc.) is difficult
3. The wrong representation

Image: “Fourier Features,” Tancik et al., 2020 71
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77

« geometric data stored in weights of
neural network — downstream
operations can be difficult

. e.g., editing

WHY NOT?

1. Imprecision
2. Editing (etc.) is difficult
3. The wrong representation
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weLelT

EXPLICIT
WHY NOT?
1. Imprecision . . | .
2. Editing (etc.) is difficult L Pick the right representation for your problem! )

3. The wrong representation
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Sharp features in neural implicits WORKING OUT THE DETAILS

Sharp features are hard for standard
techniques to capture!

Image: “Fourier Features,” Tancik et al., 2020 75



Sharp features in neural implicits
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Fourier Features [Tancik et al., 2020

Fourier Features Let Networks Learn

High Frequency Functions in Low Dimensional Domains

Matthew Tancik'*  Pratul P. Srinivasan'>*  Ben Mildenhall'* Sara Fridovich-Keil!

Nithin Raghavan' Utkarsh Singhal' Ravi Ramamoorthi® Jonathan T. Barron> Ren Ng'
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Abstract

We show that passing input points through a simple Fourier feature mapping
enables a multilayer perceptron (MLP) to learn high-frequency functions in low-
dimensional problem domains. These results shed light on recent advances in
computer vision and graphics that achieve state-of-the-art results by using MLPs
to represent complex 3D objects and scenes. Using tools from the neural tangent
kernel (NTK) literature, we show that a standard MLP fails to learn high frequencies
both in theory and in practice. To overcome this spectral bias, we use a Fourier
feature mapping to transform the effective NTK into a stationary kernel with a
tunable bandwidth. We suggest an approach for selecting problem-specific Fourier
features that greatly improves the performance of MLPs for low-dimensional
regression tasks relevant to the computer vision and graphics communities.

1 Introduction

A recent line of research in computer vision and graphics replaces traditional discrete representations
of objects, scene geometry, and appearance (e.g. meshes and voxel grids) with continuous functions
parameterized by deep fully-connected networks (also called multilayer perceptrons or MLPs). These
MLPs, which we will call “coordinate-based” MLPs, take low-dimensional coordinates as inputs
(typically points in R%) and are trained to output a representation of shape, density, and/or color at
each input location (see Figure 1). This strategy is compelling since coordinate-based MLPs are
amenable to gradient-based optimization and machine learning, and can be orders of magnitude more
compact than grid-sampled representations. Coordinate-based MLPs have been used to represent
images [28, 38] (referred to as “compositional pattern producing networks”), volume density [27],
occupancy [24], and signed distance [32], and have achieved state-of-the-art results across a variety
of tasks such as shape representation [9, 10, 12, 13, 17, 26, 32], texture synthesis [15, 31], shape
inference from images [22, 23], and novel view synthesis [27, 29, 35, 37].

We leverage recent progress in modeling the behavior of deep networks using kernel regression with
a neural tangent kernel (NTK) [16] to theoretically and experimentally show that standard MLPs are
poorly suited for these low-dimensional coordinate-based vision and graphics tasks. In particular,
MLPs have difficulty learning high frequency functions, a phenomenon referred to in the literature as
“spectral bias” [3, 33]. NTK theory suggests that this is because standard coordinate-based MLPs
correspond to kernels with a rapid frequency falloff, which effectively prevents them from being able
to represent the high-frequency content present in natural images and scenes.

A few recent works [27, 44] have experimentally found that a heuristic sinusoidal mapping of input
coordinates (called a “positional encoding”) allows MLPs to represent higher frequency content.

* Authors contributed equally to this work. Preprint. Under review.
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Implicit Neural Representations with Periodic
Activation Functions
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Abstract

Implicitly defined, continuous, differentiable signal representations parameterized
by neural networks have emerged as a powerful paradigm, offering many possible
benefits over conventional representations. However, current network architectures
for such implicit neural representations are incapable of modeling signals with
fine detail, and fail to represent a signal’s spatial and temporal derivatives, despite
the fact that these are essential to many physical signals defined implicitly as the
solution to partial differential equations. We propose to leverage periodic activation
functions for implicit neural representations and demonstrate that these networks,
dubbed sinusoidal representation networks or SIRENS, are ideally suited for repre-
senting complex natural signals and their derivatives. We analyze SIREN activation
statistics to propose a principled initialization scheme and demonstrate the represen-
tation of images, wavefields, video, sound, and their derivatives. Further, we show
how SIRENS can be leveraged to solve challenging boundary value problems, such
as particular Eikonal equations (yielding signed distance functions), the Poisson
equation, and the Helmholtz and wave equations. Lastly, we combine SIRENs with
hypernetworks to learn priors over the space of SIREN functions. Please see the
project website for a video overview of the proposed method and all applications.

1 Introduction

We are interested in a class of functions @ that satisfy equations of the form
F(x,8,Vx®,Vid,...) =0, &:x+ ®(x). 6}

This implicit problem formulation takes as input the spatial or spatio-temporal coordinates x € R™
and, optionally, derivatives of ® with respect to these coordinates. Our goal is then to learn a neural
network that parameterizes ¢ to map x to some quantity of interest while satisfying the constraint
presented in Equation (1). Thus, & is implicitly defined by the relation defined by F’ and we refer to
neural networks that parameterize such implicitly defined functions as implicit neural representations.
As we show in this paper, a surprisingly wide variety of problems across scientific fields fall into this
form, such as modeling many different types of discrete signals in image, video, and audio processing
using a continuous and differentiable representation, learning 3D shape representations via signed
distance functions [1-4], and, more generally, solving boundary value problems, such as the Poisson,
Helmbholtz, or wave equations.

*These authors contributed equally to this work.

Preprint. Under review.
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augment input points with “Fourier features”

y(v) = [a, cos(2xb{ V), a, sin(2zblv), ..., a, cos(2zb) V), a, sin(2zb, v)

No Fourier features

)
2
S
St
o
=
—
=
=
(a) Coordinate-based MLP (b) Image regression  (c) 3D shape regression (d) MRI reconstruction  (e) Inverse rendering
(x,y) — RGB (x,y,2z) — occupancy (z,y,z) — density  (zx,y,z) — RGB, density

utnors conurioutea equaily to s Work. Freprint. Unaer review.

Fourier Features [Tancik et al., 2020]
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change only activation
functions

A
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SIREN [Sitzmann et al., 2020
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Abstract. Recently, implicit neural representat
ity for learning-based 3D reconstruction. While
results, most implicit approaches are limited to
etry of single objects and do not scale to more ¢
scenes. The key limiting factor of implicit metl
connected network architecture which does not :
information in the observations or incorporati
as translational equivariance. In this paper, w
Occupancy Networks, a more flexible implicit re
reconstruction of objects and 3D scenes. By .
encoders with implicit occupancy decoders, our :
tive biases, enabling structured reasoning in 3D
effectiveness of the proposed representation by
geometry from noisy point clouds and low-resolu
We empirically find that our method enables

3D reconstruction of single objects, scales to

generalizes well from synthetic to real data.

1 Introduction

3D reconstruction is a fundamental problem in co
applications. An ideal representation of 3D geome
properties: a) encode complex geometries and arl
large scenes, ¢) encapsulate local and global inforr
terms of memory and computation.
Unfortunately, current representations for 3D
all of these requirements. Volumetric representatio
resolution due to their large memory requirements. .
3D representations but discard topological relation
[13] are often hard to predict using neural networl
Recently, several works [3,20,27,31] have introc

* This work was done prior to joining Amazon.

Interpolation

‘/3D Feature Volume

tions which represent 3D structures using learned occupancy or signed distance
functions. In contrast to explicit representations, implicit methods do not dis-
cretize 3D space during training, thus resulting in continuous representations
of 3D geometry without topology restrictions. While inspiring many follow-up

3D LocationP Occupancy
Probabllity

Features

| ‘ P, X
\—P =

—>

Fully-Connected
Network

Convolutional Occupancy
Network [Peng et al., 2020]

fé’ P

P, X
1
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NRC SDF Gigapixel image

NeRF

Instant Neural Graphics Primitives with a Multiresolution Hash Encoding

THOMAS MULLER, NVIDIA, Switzerland
ALEX EVANS, NVIDIA, United Kingdom
CHRISTOPH SCHIED, NVIDIA, USA
ALEXANDER KELLER, NVIDIA, Germany

https://nvlabs.github.io/instant-ngp

Trained for 1 second 15 seconds

1 second

15 seconds 60 seconds reference

Fig. 1. We demonstrate instant training of neural graphics primitives on a single GPU for multiple tasks. In Gigapixel image we represent a gigapixel image by
a neural network. SDF learns a signed distance function in 3D space whose zero level-set represents a 2D surface. Neural radiance caching (NRC) [Miiller
et al. 2021] employs a neural network that is trained in real-time to cache costly lighting calculations. Lastly, NeRF [Mildenhall et al. 2020] uses 2D images
and their camera poses to reconstruct a volumetric radiance-and-density field that is visualized using ray marching. In all tasks, our encoding and its
efficient implementation provide clear benefits: rapid training, high quality, and simplicity. Our encoding is task-agnostic: we use the same implementation
and hyperparameters across all tasks and only vary the hash table size which trades off quality and performance. Tokyo gigapixel photograph ©Trevor
Dobson (CC BY-NC-ND 2.0), Lego bulldozer 3D model ©Havard Dalen (CC BY-NC 2.0)

Neural graphics primitives, parameterized by fully connected neural net-
works, can be costly to train and evaluate. We reduce this cost with a versatile
new input encoding that permits the use of a smaller network without sac-
rificing quality, thus significantly reducing the number of floating point
and memory access operations: a small neural network is augmented by a
multiresolution hash table of trainable feature vectors whose values are op-
timized through stochastic gradient descent. The multiresolution structure
allows the network to disambiguate hash collisions, making for a simple

Authors’ addresses: Thomas Miiller, NVIDIA, Ziirich, Switzerland, tmueller@nvidia.
com; Alex Evans, NVIDIA, London, United Kingdom, alexe@nvidia.com; Christoph
Schied, NVIDIA, Seattle, USA, cschied@nvidia.com; Alexander Keller, NVIDIA, Berlin,
Germany, akeller@nvidia.com.

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in ACM Transactions on
Graphics, https://doi.org/10.1145/3528223.3530127.

architecture that is trivial to parallelize on modern GPUs. We leverage this
parallelism by implementing the whole system using fully-fused CUDA ker-
nels with a focus on minimizing wasted bandwidth and compute operations.
We achieve a combined speedup of several orders of magnitude, enabling
training of high-quality neural graphics primitives in a matter of seconds,
and rendering in tens of milliseconds at a resolution of 1920x1080.

CCS Concepts: » Computing methodologies — Massively parallel algo-
rithms; Vector / streaming algorithms; Neural networks.

Additional Key Words and Phrases: Image Synthesis, Neural Networks, En-
codings, Hashing, GPUs, Parallel Computation, Function Approximation.

ACM Reference Format:
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Instant Neural Graphics Primitives with a Multiresolution Hash Encoding.
ACM Trans. Graph. 41, 4, Article 102 (July 2022), 15 pages. https://doi.org/10.
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Training neural implicits: sampling points
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2Centre for Intelligent Machines, McGill University

ABSTRACT

A neural implicit outputs a number indicating whether the given query point in
space is inside, outside, or on a surface. Many prior works have focused on latent-
encoded neural implicits, where a latent vector encoding of a specific shape is also
fed as input. While affording latent-space interpolation, this comes at the cost of
reconstruction accuracy for any single shape. Training a specific network for each
3D shape, a weight-encoded neural implicit may forgo the latent vector and focus
reconstruction accuracy on the details of a single shape. While previously consid-
ered as an intermediary representation for 3D scanning tasks or as a toy-problem
leading up to latent-encoding tasks, weight-encoded neural implicits have not yet
been taken seriously as a 3D shape representation. In this paper, we establish that
weight-encoded neural implicits meet the criteria of a first-class 3D shape repre-
sentation. We introduce a suite of technical contributions to improve reconstruc-
tion accuracy, convergence, and robustness when learning the signed distance field
induced by a polygonal mesh — the de facto standard representation. Viewed as a
lossy compression, our conversion outperforms standard techniques from geome-
try processing. Compared to previous latent- and weight-encoded neural implicits
we demonstrate superior robustness, scalability, and performance.

1 INTRODUCTION

While 3D surface representation has been a foundational topic of study in the computer graphics
community for over four decades, recent developments in machine learning have highlighted the
potential that neural networks can play as effective parameterizations of solid shapes.

The success of neural approaches to shape representations has been evidenced both through their
ability of representing complex geometries as well as their utility in end-to-end 3D shape learning,
reconstruction, and understanding and tasks. These approaches also make use of the growing avail-
ability of user generated 3D content and high-fidelity 3D capture devices, e.g., point cloud scanners.

For these 3D tasks, one powerful configuration is to represent a 3D surface S as the set containing
any point ¥ € R? for which an implicit function (i.e., a neural network) evaluates to zero:

S = {7 € R%|fy(&; %) = 0}, )
where § € R™ are the network weights and Z € R¥ is an in- EXP”}CZU Implicit
put latent vector encoding a particular shape. In contrast to the de (mesh) f=0
facto standard polygonal mesh representation which explicitly dis- (
cretizes a surface’s geometry, the function f implicitly defines the
shape S encoded in Z. We refer to the representation in Eq. (1) as
a latent-encoded neural implicit. S

Park et al. (2019) propose to optimize the weights 6 so each shape S; € D in a dataset or shape
distribution D is encoded into a corresponding latent vector Z;. If successfully trained, the weights
0 of their DEEPSDF implicit function fy can be said to generalize across the “shape space” of D.
As always with supervision, reducing the training set from D will affect f’s ability to generalize and
can lead to overfitting. Doing so may seem, at first, to be an ill-fated and uninteresting idea.

Our work considers an extreme case — when the training set is reduced to a single shape S;. We can
draw a simple but powerful conclusion: in this setting, one can completely forgo the latent vector

high
density

rom On the Effectiveness of Weight-Encoded
Neural Implicit 3D Shapes [Davies et al., 2021
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care more about reconstruction quality near surface =
bias loss, achieved via importance sampling near surface

stratified sampling importance sampling
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offset surfaces

distance queries

NEURAL IMPLICITS = GEOMETRIC OPERATIONS

Signed Distance Function

« |f(x)| encodes distance to
closest point on surface
e many geometric queries easy
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How do we make a neural implicit an SDF?

85



NEURAL IMPLICITS = GEOMETRIC OPERATIONS

How do we make a neural implicit an SDF?

LX) = LX) + Lgpp(x)

add regularization term to loss function
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Implicit Geometric Regularization for Learning Shapes

Amos Gropp ' Lior Yariv! Niv Haim' Matan Atzmon

Abstract

Representing shapes as level sets of neural net-
works has been recently proved to be useful for
different shape analysis and reconstruction tasks.
So far, such representations were computed using
either: (i) pre-computed implicit shape representa-
tions; or (ii) loss functions explicitly defined over
the neural level sets.

In this paper we offer a new paradigm for comput-
ing high fidelity implicit neural representations
directly from raw data (i.e., point clouds, with or
without normal information). We observe that a
rather simple loss function, encouraging the neu-
ral network to vanish on the input point cloud
and to have a unit norm gradient, possesses an
implicit geometric regularization property that fa-
vors smooth and natural zero level set surfaces,
avoiding bad zero-loss solutions.

‘We provide a theoretical analysis of this property
for the linear case, and show that, in practice, our
method leads to state of the art implicit neural
representations with higher level-of-details and
fidelity compared to previous methods.

1. Introduction

Recently, level sets of neural networks have been used to
represent 3D shapes (Park et al., 2019; Atzmon et al., 2019;
Chen & Zhang, 2019; Mescheder et al., 2019), i.e.,

M={w€]R3|f(a:;0)=0}, (€))

where f : R? x R™ — R is a multilayer perceptron (MLP);
we call such representations implicit neural representations.
Compared to the more traditional way of representing sur-
faces via implicit functions defined on volumetric grids (Wu

!'Department of Computer Science & Applied Mathematics,
Weizmann Institute of Science, Rehovot, Israel. Correspondence
to: Amos Gropp <amos.gropp@weizmann.ac.il>.

Proceedings of the 37" International Conference on Machine
Learning, Vienna, Austria, PMLR 119, 2020. Copyright 2020 by
the author(s).
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Figure}l. Learning curves from 2D point clouds (white disks) usir
neural hetworks, M. The implicit geometric regularization drive

the opfimization to reach plausible explanation of the data.
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)
discre cation of the illléle];l I\
ous wprks using implicit hedral representations computed

f witl} 3D supervision; that is, by comparing f to a known

., 2016; Dai et al., 2017; Stutz &
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our mdthod; black lines depict the zero level sets of the train lkonal L OSS
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pre-computed signed distance functions of shapes; (Chen &
Zhang, 2019; Mescheder et al., 2019) use classification loss
with pre-computed occupancy function.

In this work we are interested in working directly with raw
data: Given an input point cloud X = {z;},., C R?, with
or without normal data, N' = {ni}ier C R?, our goal is
to compute @ such that f(z; 0) is approximately the signed
distance function to a plausible surface M defined by the
point data X and normals .

Some previous works are constructing implicit neural repre-
sentations from raw data. In (Atzmon et al., 2019) no 3D
supervision is required and the loss is formulated directly on
the zero level set M iterative sampling of the zero level set
is required for formulating the loss. In a more recent work,
(Atzmon & Lipman, 2020) use unsigned regression to intro-
duce good local minima that produces useful implicit neural
representations, with no 3D supervision and no zero level set

Gropp et. al, 2020

NEURAL IMPLICITS
GEOMETRIC OPERATIONS
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Eikonal loss: walkthrough GEOMETRIC OPERATIONS




Eikonal but not SDF GEOMETRIC OPERATIONS
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= IMax
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PSEUDO-SDF

V' eikonality
X distance property
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Eikonal Loss
avg. value = 7.1x105
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Closest point loss

Constructive Solid Geometry on Neural Signed Distance Fields

Zoé Marschner
zoem@cmu.edu
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Hsueh-Ti Derek Liu
hsuehtil@gmail.com
Roblox Research
University of Toronto
Canada
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Figure 1: Our method allows for the computation of exact neural SDFs of CSG operations. Here, we train one network to learn
the swept volume of a stellated dodecahedron shape, parametric over the control points of the cubic Bézier path it is swept
along. Specific swept volumes within this parameter space are then unioned together and with cylinders, resulting in a neural
implicit which thanks to our regularization term forms an exact SDF of the word “SDF.”

ABSTRACT

Signed Distance Fields (SDFs) parameterized by neural networks
have recently gained popularity as a fundamental geometric rep-
resentation. However, editing the shape encoded by a neural SDF
remains an open challenge. A tempting approach is to leverage
common geometric operators (e.g., boolean operations), but such
edits often lead to incorrect non-SDF outputs (which we call Pseudo-
SDFs), preventing them from being used for downstream tasks. In
this paper, we characterize the space of Pseudo-SDFs, which are
eikonal yet not true distance functions, and derive the closest point
loss, a novel regularizer that encourages the output to be an exact
SDF. We demonstrate the applicability of our regularization to many
operations in which traditional methods cause a Pseudo-SDF to

O

This work is licensed under a Creative Commons Attribution International
4.0 License.

SA Conference Papers '23, December 12-15, 2023, Sydney, NSW, Australia
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0315-7/23/12.
https://doi.org/10.1145/3610548.3618170

arise, such as CSG and swept volumes, and produce a true (neural)
SDF for the result of these operations.

CCS CONCEPTS

« Computing methodologies — Shape modeling; Shape rep-
resentations.

KEYWORDS
signed distance field, neural implicit, CSG, swept volumes

ACM Reference Format:

Zoé Marschner, Silvia Sellan, Hsueh-Ti Derek Liu, and Alec Jacobson. 2023.
Constructive Solid Geometry on Neural Signed Distance Fields. In SIG-
GRAPH Asia 2023 Conference Papers (SA Conference Papers "23), December
12-15, 2023, Sydney, NSW, Australia. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3610548.3618170

1 INTRODUCTION

Neural implicit functions have gained attention as a fundamental
representation of 3D objects due to their state-of-the-art perfor-
mance in tasks like compression and reconstruction, as well as their
generative power. They describe the boundary of a solid shape as

CSG on Neural SDFs
Marschner et al., 2023

CSG Operations

NEURAL IMPLICITS
GEOMETRIC OPERATIONS

Swept Volumes
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Eikonal Loss
avg. value = 7.1x10-5
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Pseudo-SDF
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Pseudo-SDF

Closest Point Map

X=X —f(X) fo(X)
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Pseudo-SDF

9 v

Closest Point Loss

f(x _f(x) fo(x))Z

Exact SDF
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‘ Pseudo-SDF

Closest Point Loss

Ecp = f(x = f0) V, fix))”
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Neural signed distance fields...
(+) enable many geometric operations 0001
(-) are difficult to maintain

Closest Point Loss (ours)
avg. value = 0.003
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Alternative to SDFs for GP

Spelunking the Deep: Guaranteed Queries on
General Neural Implicit Surfaces via Range Analysis

NICHOLAS SHARP, University of Toronto, Canada

ALEC JACOBSON, University of Toronto, Adobe Research, Canada

Neural implicit representations, which encode a surface as the level set of a
neural network applied to spatial coordinates, have proven to be remark-
ably effective for optimizing, compressing, and generating 3D geometry.
Although these representations are easy to fit, it is not clear how to best
evaluate geometric queries on the shape, such as intersecting against a ray
or finding a closest point. The predominant approach is to encourage the
network to have a signed distance property. However, this property typically
holds only approximately, leading to robustness issues, and holds only at the
conclusion of training, inhibiting the use of queries in loss functions. Instead,
this work presents a new approach to perform queries directly on general
neural implicit functions for a wide range of existing architectures. Our key
tool is the application of range analysis to neural networks, using automatic
arithmetic rules to bound the output of a network over a region; we conduct
a study of range analysis on neural networks, and identify variants of affine
arithmetic which are highly effective. We use the resulting bounds to develop
geometric queries including ray casting, intersection testing, constructing
spatial hierarchies, fast mesh extraction, closest-point evaluation, evaluating
bulk properties, and more. Our queries can be efficiently evaluated on GPUs,
and offer concrete accuracy guarantees even on randomly-initialized net-
works, enabling their use in training objectives and beyond. We also show a
preliminary application to inverse rendering.

CCS Concepts: « Computing methodologies — Shape analysis; Shape
representations; - Mathematics of computing — Interval arithmetic.

Additional Key Words and Phrases: implicit surfaces, neural networks, range
analysis, geometry processing

1 INTRODUCTION

Representing shapes presents a fundamental dilemma across visual
and scientific computing: point clouds and voxel grids are easy
to process efficiently, but lack explicit connectivity information;
meshes offer a concise and precise description of a surface, but may
require difficult unstructured computation, etc. Recently, neural im-
plicit representations have emerged as a promising alternative for
a variety of important tasks—the basic idea is to encode a surface
as a level set of a neural network applied to spatial coordinates.
These neural implicit surfaces inherit many of the strengths which
have made neural networks ubiquitous across visual computing,
including effective gradient-based optimization, integration with
data-driven priors and objectives, and straightforward paralleliza-
tion on modern hardware.

However, there is a price to pay in return for these strong prop-
erties: there is no clear strategy for evaluating even the most basic
geometric queries against a neural implicit surface, such as inter-
secting a ray with the surface, or finding a closest point. It would

Authors’ addresses: Nicholas Sharp, University of Toronto, Canada, nsharp@cs.toronto.
edu; Alec Jacobson, University of Toronto, Adobe Research, Canada, jacobson@cs.
toronto.edu.

ray
casting

closest point
queries

ihierarchical
imesh
_iextraction

intersection tests

Fig. 1. Our method enables geometric queries on neural implicit surfaces,
without relying on fitting a signed distance function. Several queries are
shown here on a neural implicit occupancy function encoding a mine cart.
These operations open up new explorations of deep implicit surfaces.

seem that the only thing we can do with such a function is to sample
it at a point. In a sense, the powerful generality of neural networks
is exactly what makes them difficult to query—because they can
approximate arbitrary functions with adaptive spatial resolution, it
is very difficult to characterize the geometry of their level sets.

One popular recourse is to attempt to fit implicit functions which
not only encode a surface via their zero level set, but furthermore
have a signed-distance function (SDF) property away from the level
set: the magnitude of the function gives the distance to the surface.
Although exact SDFs are well-suited for many queries in geometry
processing, approximate neural SDFs leave much to be desired. First,
such networks are only approximately SDFs, and may overestimate
the distance to the surface, causing queries to fail unpredictably.
More importantly, the SDF property only applies after a network
has been successfully fitted; thus we cannot make use of geometric
queries in the early stages of training, e.g., to define geometric
loss functions. Even more broadly, relaxing the expectation that a
network fits an SDF opens up a broader class of neural network
formulations and objectives, such as those based on occupancy (e.g.,
as in Section 5).
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uaranteed Queries on General Neural Implici
Surfaces via Range Analysis [Sharp et al., 2022
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Technique: interval analysis on neural network

SDF sphere tracing general interval tracing
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