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Goals: learn about  
• what neural implicits are  
• how & when to use them 
• important techniques for 

working with them 
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f(t) = (1,1)t t ∈ [0,1]
EXPLICITIMPLICIT

x2 + y2 = r2
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IMPLICIT

f(x, y) = x2 + y2 − r2
f(x, y) : ℝ2 → ℝ

0

1

2

3
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f(x, y) = c

c-Level Sets 

• surface defined by set of 
points where f is equal to c

-1 2
c =

0

1

2

3



c-Level Sets 

• surface defined by set of 
points where f is equal to c 

• typically, zero-level set is 
treated as the surface
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“The representation of the shape of a 3D object in terms of 
numerical information stored in the computer memory […] is 
still an important problem in computer graphics.”

Early use of implicit functions in graphics:  
Ricci, “Constructive Geometry for Computer Graphics” (1973)
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Jim Blinn’s “Blobby molecules” (1982)

todo: source blobby man video



todo: source blobby man video
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  For more background on implicits, see Chapter 21 of Fundamentals of Computer Graphics

“metaballs”

“so objects”

Right image: Brian Wyvill 



IMPLICIT SURFACES ➔ BACKGROUND & HISTORY

13

IMPLICIT SURFACES: BIG IDEAS 
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“outside!”

“inside!”

0
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Video: Inigo Quilez
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Constructive solid geometry

union 
  A ∪ B

intersection 
  A ∩ B

difference 
  A − B

Modeling with implicits

Complex shapes from simple primitives!

  For more amazing implicit function art, see Inigo ilez’s blog
1818

https://iquilezles.org/articles/raymarchingdf/
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implicit 
functions



Indicator Function
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Indicator Function 

f(x) = {−1 x ∈ shape
1 x ∉ shape

0
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implicit 
functions

SDF
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Signed Distance Function 

•  encodes distance to 
closest point on surface
| f(x) |

f(x)

−f(y)



−f(y)

Signed Distance Function 

•  encodes distance to 
closest point on surface
| f(x) |

x

y

f(y)f(x)

f(x)
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x1
f(x1) = 1



−f(y)

Signed Distance Function 

•  encodes distance to 
closest point on surface
| f(x) |
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f(y)f(x)
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x1
x2

f(x1) = 1

f(x2) = 2

∥x1 − x2∥ = 1



−f(y)

Signed Distance Function 

•  encodes distance to 
closest point on surface
| f(x) |

x

y

f(y)f(x)

f(x)
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x1
x2

f(x1) = 1

f(x2) = 2

∥x1 − x2∥ = 1

∇f(x) = 1
eikonality
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Signed Distance Function 

•  encodes distance to 
closest point on surface 

• makes many tasks way easier ☺  
• e.g., offset surfaces, distance 

checks for simulation, etc. 

| f(x) |

surface offset

0 0.7
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Signed Distance Function 

•  encodes distance to 
closest point on surface 

• makes many tasks way easier ☺  
• e.g., offset surfaces, distance 

checks for simulation, etc.  
• e.g., geometric quantities

| f(x) |

Mean curvature (  )Δf

Surface normals (  )∇f



x

y

f(y)f(x)

IMPLICIT SURFACES ➔ BACKGROUND & HISTORY

28

IMPLICIT SURFACES: BIG IDEAS 
1. CSG  
2. Taxonomy of implicits 
3. Rendering 
4. Surface Extraction

2828

Signed Distance Function 

•  encodes distance to 
closest point on surface 

• makes many tasks way easier ☺  
• distance property is hard to 

maintain ☹ 
• e.g., not preserved by most 

editing operations

| f(x) |

Real-world “SDFs” [Takikawa et al., 2022]
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implicit 
functions

SDF

conservative 
SDFs

Conservative SDFs 

• (aka approximate SDFs) 
•  is less than the distance to the 

closest point on the surface
| f(x) |
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implicit 
functions

SDF

conservative 
SDFs

Conservative SDFs 

• (aka approximate SDFs) 
•  is less than the distance to the 

closest point on the surface 
• tradeoff between ease of maintaining 

& having useful properties

| f(x) |
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Sphere Tracing 

• introduced by [Hart, 1996] 
• technique to ray trace conservative SDFs 





IMPLICIT SURFACES ➔ BACKGROUND & HISTORY

32

IMPLICIT SURFACES: BIG IDEAS 
1. CSG 
2. Taxonomy of implicits 
3. Rendering 
4. Surface Extraction

3232

Sphere Tracing 

• introduced by [Hart, 1996] 
• technique to ray trace conservative SDFs 
•  is distance we can definitely travel 

without crossing the surface
| f(x) |
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Sphere Tracing 

• introduced by [Hart, 1996] 
• technique to ray trace conservative SDFs 
•  is distance we can definitely travel 

without crossing the surface
| f(x) |



Marching cubes 

• introduced by [Lorensen & Cline, 1987] 
• identify voxels with surface present, 

draw surface in each of these voxels
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Marching cubes 

• introduced by [Lorensen & Cline, 1987] 
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Neural Dual Contouring
ZHIQIN CHEN, Simon Fraser University, CanadaANDREA TAGLIASACCHI, Google Research, Simon Fraser University, Canada

THOMAS FUNKHOUSER, Google Research, USAHAO ZHANG, Simon Fraser University, Canada

Fig. 1. Neural dual contouring (NDC) is a unified data-driven approach that learns to reconstruct meshes (bo�om) from a variety of inputs (top): signed or

unsigned distance fields, binary voxels, non-oriented point clouds, and noisy raw scans. Trained on CAD models, NDC generalizes to a broad range of shape

types: CAD models with sharp edges, organic shapes, open surfaces for cloths, scans of indoor scenes, and even the non-orientable Mobiüs strip.

We introduce neural dual contouring (NDC), a new data-driven approach to
mesh reconstruction based on dual contouring (DC). Like traditional DC, it
produces exactly one vertex per grid cell and one quad for each grid edge
intersection, a natural and e�cient structure for reproducing sharp features.
However, rather than computing vertex locations and edge crossings with
hand-crafted functions that depend directly on di�cult-to-obtain surface
gradients, NDC uses a neural network to predict them. As a result, NDC
can be trained to produce meshes from signed or unsigned distance �elds,
binary voxel grids, or point clouds (with or without normals); and it can
produce open surfaces in cases where the input represents a sheet or partial
surface. During experiments with �ve prominent datasets, we �nd that
NDC, when trained on one of the datasets, generalizes well to the others.
Furthermore, NDC provides better surface reconstruction accuracy, feature
preservation, output complexity, triangle quality, and inference time in
comparison to previous learned (e.g., neural marching cubes, convolutional
occupancy networks) and traditional (e.g., Poisson) methods. Code and data
are available at https://github.com/czq142857/NDC.CCS Concepts: • Computing methodologies! Shape modeling.Additional Key Words and Phrases: Surface reconstruction, isosurface, re-

construction from point cloud, machine learning
Authors’ addresses: Zhiqin Chen, Simon Fraser University, Canada, zhiqinc@sfu.ca;

Andrea Tagliasacchi, Google Research, Simon Fraser University, Canada, atagliasacchi@

google.com; Thomas Funkhouser, Google Research, USA, tfunkhouser@google.com;

Hao Zhang , Simon Fraser University, Canada, haoz@sfu.ca.

1 INTRODUCTION
Polygonal mesh reconstruction from discrete inputs such as point
clouds and voxel grids has been one of the most classical and well-
studied problems in computer graphics [Berger et al. 2017; DeAraújo
et al. 2015]. Current solutions to the problem are predominantly
model-driven, often relying on assumptions such as those related
to shape characteristics (e.g., watertightness, zero genus, etc.), sur-
face interpolants (e.g., trilinearity), sampling conditions, surface
normals, and other reconstruction priors. It is only recently that
a few data-driven meshing methods have emerged. However, they
have mostly focused on learning point set triangulations [Liu et al.
2020; Rakotosaona et al. 2021; Sharp and Ovsjanikov 2020]. One ex-
ception is Neural Marching Cubes (NMC) [Chen and Zhang 2021], a
learning-basedMarching Cubes (MC) approach for mesh reconstruc-
tion from a voxel grid of signed distances or binary occupancies.
In comparison to the original MC algorithm [Lorensen and Cline
1987] and its best-known variant, MC33 [Chernyaev 1995], NMC
uses tessellation templates with more adaptive mesh topologies and
learns local shape priors from training meshes. As a result, NMC
generalizes well to a broader range of shape types and excels at
preserving sharp features, two long-standing issues in existing MC
work. On the other hand, the NMC tessellation templates are neces-
sarily more complex than those of MC and MC33. As a result, NMC
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Figure 1: Re
constructing

a mesh from the discrete
signed distance �el

d (SDF) of a k
oala (source

, rightmost). By using global

information from all sample points at on
ce, our method recovers the

shape even in low resolutions
where methods like

Marching Cubes [Lore
nsen and Cline 1987] a

nd Neural Dual
Contouring

(NDCx) [Che
n et al. 2022a]

produce very
coarse shape

s

(le� trio), and it recovers s
urface detai

l at higher r
esolutions th

at Marching Cubes and NDCx miss (middle trio). Ou
r method is

purely geometric, and does not req
uire any training or storing of weights (unlik

e NDCx).

ABSTRACT

Signed distance �elds (SDFs)
are a widely used implicit surface

representation
, with broad applications i

n computer graphic
s, com-

puter vision,
and applied m

athematics. To reco
nstruct an explicit

triangle mesh surface correspondin
g to an SDF, traditio

nal iso-

surfacing methods, such
as Marching Cube

s and and its
variants,

are typically
used. Howeve

r, these methods overlo
ok fundamental

properties of
SDFs, resultin

g in reconstructio
ns that exhibi

t severe

oversmoothing and f
eature loss. T

o address this
shortcoming, we

propose a no
vel method based o

n a key insight: each
SDF sample

corresponds t
o a spherical

region that must lie fully inside or out-

side the surfa
ce, depending

on its sign, and that must be tangen
t

to the surface a
t some point. Leve

raging this understa
nding, we

formulate an energ
y that gauges

the degree of
violation of ta

ngency

constraints by
a proposed surface. We then employ a gradient �o

w

that minimizes our ener
gy, starting fr

om an initial triangl
e mesh

that encapsul
ates the surfa

ce. This algor
ithm yields superio

r recon-

structions to
previous methods, even

with sparsely sampled SDFs.

Our approach
provides a more nuanced u

nderstanding
of SDFs and

o�ers signi�c
ant improvements in surface recon

struction.

CCS CONCE
PTS

• Computing methodologie
s! Shape modeling; Mesh mod-

els; Mesh geometry models.

KEYWORDS

surface recon
struction, sig

ned distance func
tion, geometric �ow

1 INTRODUCTI
ON

Signed distance �eld
s (SDFs) are

a classical im
plicit surface

rep-

resentation that �nds div
erse applicati

ons in computer graphic
s,

computer vision,
and applied m

athematics, among other dom
ains

[Frisken et al. 2000; Jo
nes et al. 2006

; Sethian 1999]. A continuous

SDF is a scalar functio
n q (x) that, giv

en a query point x in R= ,

returns the Eu
clidean distance to the closest po

int on the surface it

represents, au
gmented with a sign indicating wh

ether the poin
t is

on the interior o
r exterior. A discrete SDF

samples this func
tion at

a �nite set of
points in space, such as a grid, octr

ee, or point c
loud.

The task we consider i
s the reconst

ruction of an explicit trian
gle

mesh correspondin
g to the zero

isosurface of
such a discrete SD

F.

Perhaps the m
ost familiar such isosurfacing a

pproach is March-

ing Cubes [Loren
sen and Cline 1987] a

nd its variants. T
hey use

sign changes betw
een adjacent SDF

samples (e.g., alon
g grid edges)

to approximately locate the zer
o isosurface and

apply per-cell tem-

plates and linear interpo
lation of the functio

n values to �ll in local

• recent work on improved surface extraction, e.g., 
• using distance info for SDF case [Sellán et al., 2023] 
• using machine learning & data [Chen et al. 2022]
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• e.g., what is the total surface 
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IMPLICIT 

• answer questions about points in 
space 
• e.g., is this point inside the 

surface? 
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EXPLICIT 

• answer questions about surface 
• e.g., what is the total surface 

area 
• often faster, often want to 

operate directly on surface, … 

IMPLICIT 

• answer questions about points in 
space 
• e.g., is this point inside the 

surface? 
• watertight, easy CSG, …

in implicit representations, topology changes are 
continuous (very useful for inverse tasks!)

Video: “Differentiable Signed Distance Function Rendering,” Vicini et al., 2022
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EXPLICIT 

• answer questions about surface 
• e.g., what is the total surface 

area 
• often faster, often want to 

operate directly on surface, … 

IMPLICIT 

• answer questions about points in 
space 
• e.g., is this point inside the 

surface? 
• watertight, easy CSG, …

marching cubes

distance computation
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• slow to compute complex formulas 
• can’t always find analytic representation

  For analytic definitions of SDFs, see “Distance Functions” page on Inigo illez’s blog

float sdStar5(in vec2 p, in float r, in float rf) 
{ 
    const vec2 k1 = vec2(0.809016994375, -0.587785252292); 
    const vec2 k2 = vec2(-k1.x,k1.y); 
    p.x = abs(p.x); 
    p -= 2.0*max(dot(k1,p),0.0)*k1; 
    p -= 2.0*max(dot(k2,p),0.0)*k2; 
    p.x = abs(p.x); 
    p.y -= r; 
    vec2 ba = rf*vec2(-k1.y,k1.x) - vec2(0,1); 
    float h = clamp( dot(p,ba)/dot(ba,ba), 0.0, r ); 
    return length(p-ba*h) * sign(p.y*ba.x-p.x*ba.y); 
}

Code: Inigo Quillez
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w0,0 w1,0 w2,0 w3,0

w0,1 w1,1 w2,1 w3,1

w0,2 w1,2 w2,2 w3,2

w0,3 w1,3 w2,3 w3,3

f(x, y) = (⌊x⌋ = 0 & ⌊y⌋ = 0) w0,0 + (⌊x⌋ = 1 & ⌊y⌋ = 0) w1,0 + …w0,0 w1,0
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f(x, y) = wn,0xn + wn−1,1xny + … + w0,1y + w0,0wn,0 wn−1,1 w0,1 w0,0
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 fθ : ℝn → ℝ

fθ(x) = AN
θ φ(A1

θ φ(A0
θ x + b0

θ ) + b1
θ + …) + bN

θ

  For an intro to Neural Networks, see the course “6.036 Intro to ML” on OCW

https://ocw.mit.edu/courses/6-036-introduction-to-machine-learning-fall-2020/
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A0
θ x + b0

θ
linear layer

  For an intro to Neural Networks, see the course “6.036 Intro to ML” on OCW

https://ocw.mit.edu/courses/6-036-introduction-to-machine-learning-fall-2020/


ReLU SIGMOID TANH
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 fθ : ℝn → ℝ

fθ(x) = AN
θ φ(A1

θ φ(A0
θ x + b0

θ ) + b1
θ + …) + bN

θφ
non-linearity/activation function

φ

  For an intro to Neural Networks, see the course “6.036 Intro to ML” on OCW

https://ocw.mit.edu/courses/6-036-introduction-to-machine-learning-fall-2020/
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 fθ : ℝn → ℝ

fθ(x) = AN
θ φ(A1

θ φ(A0
θ x + b0

θ ) + b1
θ + …) + bN

θ
input layeroutput layer

MLP hidden layers
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 fθ : ℝn → ℝ

fθ(x) = AN
θ φ(A1

θ φ(A0
θ x + b0

θ ) + b1
θ + …) + bN

θ

Key idea: neural networks provide a 
space of functions with parameters θ
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Occupancy Networks: Learning 3D Reconstruction in Function Space

Lars Mescheder1 Michael Oechsle1,2 Michael Niemeyer1 Sebastian Nowozin3† Andreas Geiger1
1Autonomous Vision Group, MPI for Intelligent Systems and University of Tübingen

2ETAS GmbH, Stuttgart
3Google AI Berlin
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Abstract

With the advent of deep neural networks, learning-based

approaches for 3D reconstruction have gained popularity.

However, unlike for images, in 3D there is no canonical rep-

resentation which is both computationally and memory ef-

ficient yet allows for representing high-resolution geometry

of arbitrary topology. Many of the state-of-the-art learning-

based 3D reconstruction approaches can hence only repre-

sent very coarse 3D geometry or are limited to a restricted

domain. In this paper, we propose Occupancy Networks,

a new representation for learning-based 3D reconstruction

methods. Occupancy networks implicitly represent the 3D

surface as the continuous decision boundary of a deep neu-

ral network classifier. In contrast to existing approaches,

our representation encodes a description of the 3D output

at infinite resolution without excessive memory footprint.

We validate that our representation can efficiently encode

3D structure and can be inferred from various kinds of in-

put. Our experiments demonstrate competitive results, both

qualitatively and quantitatively, for the challenging tasks of

3D reconstruction from single images, noisy point clouds

and coarse discrete voxel grids. We believe that occupancy

networks will become a useful tool in a wide variety of

learning-based 3D tasks.

1. Introduction

Recently, learning-based approaches for 3D reconstruc-
tion have gained popularity [4,9,23,58,75,77]. In contrast
to traditional multi-view stereo algorithms, learned models
are able to encode rich prior information about the space of
3D shapes which helps to resolve ambiguities in the input.

While generative models have recently achieved remark-
able successes in generating realistic high resolution im-
ages [36, 47, 72], this success has not yet been replicated
in the 3D domain. In contrast to the 2D domain, the com-

†Part of this work was done while at MSR Cambridge.

(a) Voxel (b) Point (c) Mesh (d) Ours

Figure 1: Overview: Existing 3D representations discretize
the output space differently: (a) spatially in voxel represen-
tations, (b) in terms of predicted points, and (c) in terms of
vertices for mesh representations. In contrast, (d) we pro-
pose to consider the continuous decision boundary of a clas-
sifier fθ (e.g., a deep neural network) as a 3D surface which
allows to extract 3D meshes at any resolution.

munity has not yet agreed on a 3D output representation
that is both memory efficient and can be efficiently inferred
from data. Existing representations can be broadly cate-
gorized into three categories: voxel-based representations
[4,19,43,58,64,69,75] , point-based representations [1,17]
and mesh representations [34, 57, 70], see Fig. 1.

Voxel representations are a straightforward generaliza-
tion of pixels to the 3D case. Unfortunately, however, the
memory footprint of voxel representations grows cubically
with resolution, hence limiting naı̈ve implementations to
323 or 643 voxels. While it is possible to reduce the memory
footprint by using data adaptive representations such as oc-
trees [61, 67], this approach leads to complex implementa-
tions and existing data-adaptive algorithms are still limited
to relatively small 2563 voxel grids. Point clouds [1,17] and
meshes [34,57,70] have been introduced as alternative rep-
resentations for deep learning, using appropriate loss func-
tions. However, point clouds lack the connectivity structure
of the underlying mesh and hence require additional post-
processing steps to extract 3D geometry from the model.

4460

DeepSDF: Learning Continuous Signed Distance Functions
for Shape Representation

Jeong Joon Park1,3† Peter Florence 2,3† Julian Straub3 Richard Newcombe3 Steven Lovegrove3

1University of Washington 2Massachusetts Institute of Technology 3Facebook Reality Labs

Figure 1: DeepSDF represents signed distance functions (SDFs) of shapes via latent code-conditioned feed-forward decoder networks.
Above images are raycast renderings of DeepSDF interpolating between two shapes in the learned shape latent space. Best viewed digitally.

Abstract
Computer graphics, 3D computer vision and robotics

communities have produced multiple approaches to rep-
resenting 3D geometry for rendering and reconstruction.
These provide trade-offs across fidelity, efficiency and com-
pression capabilities. In this work, we introduce DeepSDF,
a learned continuous Signed Distance Function (SDF) rep-
resentation of a class of shapes that enables high qual-
ity shape representation, interpolation and completion from
partial and noisy 3D input data. DeepSDF, like its clas-
sical counterpart, represents a shape’s surface by a con-
tinuous volumetric field: the magnitude of a point in the
field represents the distance to the surface boundary and the
sign indicates whether the region is inside (-) or outside (+)
of the shape, hence our representation implicitly encodes a
shape’s boundary as the zero-level-set of the learned func-
tion while explicitly representing the classification of space
as being part of the shapes interior or not. While classical
SDF’s both in analytical or discretized voxel form typically
represent the surface of a single shape, DeepSDF can repre-
sent an entire class of shapes. Furthermore, we show state-
of-the-art performance for learned 3D shape representation
and completion while reducing the model size by an order
of magnitude compared with previous work.

† Work performed during internship at Facebook Reality Labs.

1. Introduction

Deep convolutional networks which are a mainstay of
image-based approaches grow quickly in space and time
complexity when directly generalized to the 3rd spatial di-
mension, and more classical and compact surface repre-
sentations such as triangle or quad meshes pose problems
in training since we may need to deal with an unknown
number of vertices and arbitrary topology. These chal-
lenges have limited the quality, flexibility and fidelity of
deep learning approaches when attempting to either input
3D data for processing or produce 3D inferences for object
segmentation and reconstruction.

In this work, we present a novel representation and ap-
proach for generative 3D modeling that is efficient, expres-
sive, and fully continuous. Our approach uses the concept
of a SDF, but unlike common surface reconstruction tech-
niques which discretize this SDF into a regular grid for eval-
uation and measurement denoising, we instead learn a gen-
erative model to produce such a continuous field.

The proposed continuous representation may be intu-
itively understood as a learned shape-conditioned classifier
for which the decision boundary is the surface of the shape
itself, as shown in Fig. 2. Our approach shares the genera-
tive aspect of other works seeking to map a latent space to
a distribution of complex shapes in 3D [54], but critically
differs in the central representation. While the notion of an

1
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Learning Implicit Fields for Generative Shape Modeling

Zhiqin Chen
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Abstract

We advocate the use of implicit fields for learning gen-
erative models of shapes and introduce an implicit field de-
coder, called IM-NET, for shape generation, aimed at im-
proving the visual quality of the generated shapes. An im-
plicit field assigns a value to each point in 3D space, so
that a shape can be extracted as an iso-surface. IM-NET
is trained to perform this assignment by means of a binary
classifier. Specifically, it takes a point coordinate, along
with a feature vector encoding a shape, and outputs a value
which indicates whether the point is outside the shape or
not. By replacing conventional decoders by our implicit de-
coder for representation learning (via IM-AE) and shape
generation (via IM-GAN), we demonstrate superior results
for tasks such as generative shape modeling, interpolation,
and single-view 3D reconstruction, particularly in terms of
visual quality. Code and supplementary material are avail-
able at https://github.com/czq142857/implicit-decoder.

1. Introduction
Unlike images and video, 3D shapes are not confined to

one standard representation. Up to date, deep neural net-
works for 3D shape analysis and synthesis have been devel-
oped for voxel grids [19, 48], multi-view images [42], point
clouds [1, 35], and integrated surface patches [17]. Specific
to generative modeling of 3D shapes, despite the many pro-
gresses made, the shapes produced by state-of-the-art meth-
ods still fall far short in terms of visual quality. This is re-
flected by a combination of issues including low-resolution
outputs, overly smoothed or discontinuous surfaces, as well
as a variety of topological noise and irregularities.

In this paper, we explore the use of implicit fields for
learning deep models of shapes and introduce an implicit
field decoder for shape generation, aimed at improving the
visual quality of the generated models, as shown in Fig-
ure 1. An implicit field assigns a value to each point
(x, y, z). A shape is represented by all points assigned to
a specific value and is typically rendered via iso-surface
extraction such as Marching Cubes. Our implicit field de-

Figure 1: 3D shapes generated by IM-GAN, our implicit
field generative adversarial network, which was trained on
643 or 1283 voxelized shapes. The output shapes are sam-
pled at 5123 resolution and rendered after Marching Cubes.

coder, or simply implicit decoder, is trained to perform this
assignment task, by means of a binary classifier, and it has a
very simple architecture; see Figure 2. Specifically, it takes
a point coordinate (x, y, z), along with a feature vector en-
coding a shape, and outputs a value which indicates whether
the point is outside the shape or not. In a typical application
setup, our decoder, which is coined IM-NET , would follow
an encoder which outputs the shape feature vectors and then
return an implicit field to define an output shape.

Several novel features of IM-NET impact the visual
quality of the generated shapes. First, the decoder output
can be sampled at any resolution and is not limited by the
resolution of the training shapes; see Figure 1. More im-
portantly, we concatenate point coordinates with shape fea-
tures, feeding both as input to our implicit decoder, which
learns the inside/outside status of any point relative to a
shape. In contrast, a classical convolution/deconvolution-
based neural network (CNN) operating on voxelized shapes
is typically trained to predict voxels relative to the extent
of the bounding volume of a shape. Such a network learns
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Scene Representation Networks: Continuous
3D-Structure-Aware Neural Scene Representations

Vincent Sitzmann Michael Zollhöfer Gordon Wetzstein
{sitzmann, zollhoefer}@cs.stanford.edu, gordon.wetzstein@stanford.edu

Stanford University

vsitzmann.github.io/srns/

Abstract

Unsupervised learning with generative models has the potential of discovering rich
representations of 3D scenes. While geometric deep learning has explored 3D-
structure-aware representations of scene geometry, these models typically require
explicit 3D supervision. Emerging neural scene representations can be trained only
with posed 2D images, but existing methods ignore the three-dimensional structure
of scenes. We propose Scene Representation Networks (SRNs), a continuous, 3D-
structure-aware scene representation that encodes both geometry and appearance.
SRNs represent scenes as continuous functions that map world coordinates to
a feature representation of local scene properties. By formulating the image
formation as a differentiable ray-marching algorithm, SRNs can be trained end-to-
end from only 2D images and their camera poses, without access to depth or shape.
This formulation naturally generalizes across scenes, learning powerful geometry
and appearance priors in the process. We demonstrate the potential of SRNs by
evaluating them for novel view synthesis, few-shot reconstruction, joint shape and
appearance interpolation, and unsupervised discovery of a non-rigid face model.1

1 Introduction

A major driver behind recent work on generative models has been the promise of unsupervised
discovery of powerful neural scene representations, enabling downstream tasks ranging from robotic
manipulation and few-shot 3D reconstruction to navigation. A key aspect of solving these tasks is
understanding the three-dimensional structure of an environment. However, prior work on neural
scene representations either does not or only weakly enforces 3D structure [1–4]. Multi-view
geometry and projection operations are performed by a black-box neural renderer, which is expected
to learn these operations from data. As a result, such approaches fail to discover 3D structure under
limited training data (see Sec. 4), lack guarantees on multi-view consistency of the rendered images,
and learned representations are generally not interpretable. Furthermore, these approaches lack an
intuitive interface to multi-view and projective geometry important in computer graphics, and cannot
easily generalize to camera intrinsic matrices and transformations that were completely unseen at
training time.

In geometric deep learning, many classic 3D scene representations, such as voxel grids [5–10], point
clouds [11–14], or meshes [15] have been integrated with end-to-end deep learning models and
have led to significant progress in 3D scene understanding. However, these scene representations
are discrete, limiting achievable spatial resolution, only sparsely sampling the underlying smooth
surfaces of a scene, and often require explicit 3D supervision.

1Please see supplemental video for additional results.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.
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  For more info on neural implicits, see Vincent Sitzmann’s course “ML for Inverse Graphics"

https://www.scenerepresentations.org/courses/inverse-graphics-23/
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given:  with (𝒳, 𝒱) f(x) = v

min
θ ∑

x∈𝒳
(fθ(x) − v)2

find best fiing f in func. spacegiven observations from some implicit

“loss function”
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given:  with (𝒳, 𝒱) f(x) = v

min
θ ∑

x∈𝒳
(fθ(x) − v)2

find best fiing f in func. space

optimized using stochastic 
gradient descent

given observations from some implicit
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class SDF_NN(nn.Module): 
    def __init__(self, num_layers, hidden_size): 
        super().__init__() 

        self.layers = nn.ModuleList([nn.Linear(2, hidden_size), nn.ReLU()]) 

        for _ in range(num_layers-2): 
            self.layers.append(nn.Linear(hidden_size, hidden_size)) 
            self.layers.append(nn.ReLU()) 

        self.layers.append(nn.Linear(hidden_size, 1)) 

    def forward(self, inp): 
        out = inp 

        for layer in self.layers: 
            out = layer(out) 

        return out 

def train(model, data_gen, loss_fn, steps=10000, step_size=0.001): 
    optim = torch.optim.Adam(model.parameters(), lr=step_size) 

    for i in tqdm(range(steps)): 
        pts, gts = data_gen() 

        pred = model(pts) 
        loss = loss_fn(pred, gts) 

        loss.backward() 
        optim.step() 
        optim.zero_grad() 

        if i % 100 == 0: 
            tqdm.write(f'Step: {i}, loss: {loss}') 

    torch.save(model.state_dict(), './trained_model.pt') 
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Question: is this a good function space?

Image: “SIREN,” Sitzmann et al., 2020
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WHY? 
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3. Trivially differentiable  
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Question: is this a good function space?

Universal Approximation Theorem 
[ Hornik et al., 1989] 

A MLP with one hidden layer of 
infinite width and ReLU nonlinearities 
can represent any continuous function

Image: “SIREN,” Sitzmann et al., 2020
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WHY? 
1. Representative ability 
2. Adaptability 
3. Trivially differentiable  

Question: is this a good function space?

Universal Approximation Theorem 
[ Hornik et al., 1989] 

A MLP with one hidden layer of 
infinite width and ReLU nonlinearities 
can represent any continuous function

Image: “SIREN,” Sitzmann et al., 2020

infinite
Theory does not describe 
networks used in practice
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Neural Network: 4 layers, 34 
hidden size 

2414 parameters
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2500 parameters

Neural implicits have the ability 
to adaptively use parameters  

• but this depends on the chosen 
loss function!
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Neural Network: 4 layers, 34 
hidden size 

2414 parameters

Grid: 50x50 

2500 parameters

Neural implicits have the ability 
to adaptively use parameters  

• but this depends on the chosen 
loss function!

Research into the why of neural 
networks is still far behind practice.
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many problems requiring a differentiable 
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Neural implicits can easily be used to for 
many problems requiring a differentiable 
geometry representation 

Single shot reconstruction [Sitzmann et al., 2019]

Latent space interpolation [Park et al., 2019]
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Neural implicits can easily be used to for 
many problems requiring a differentiable 
geometry representation 

Single shot reconstruction [Sitzmann et al., 2019]

Latent space interpolation [Park et al., 2019]

Topology Optimization [Zehnder et al., 2021]
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WHY? 
1. Representative ability 
2. Adaptability 
3.  Trivially differentiable  
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Neural implicits can easily be used to for 
many problems requiring a differentiable 
geometry representation 

Single shot reconstruction [Sitzmann et al., 2019]

Latent space interpolation [Park et al., 2019]

Topology Optimization [Zehnder et al., 2021]

In general: 

• inverse tasks 
• learning from data 
• integrate with ML toolbox
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WHY NOT? 
1. Imprecision 
2. Editing (etc.) is difficult 
3. The wrong representation 

7171Image: “Fourier Features,” Tancik et al., 2020

Properties hold only through soft losses 

• can be difficult to quantify amount of error 
• issue for application which require guarantees!

min
θ

ℒ( fθ)

Loss function: describes 
problem to be solved, e.g., 

• SDF property 
• reconstruction loss  
• …



layer 6, A50,50

NEURAL IMPLICITS ➔ WHY & WHY NOT

72

WHY NOT? 
1. Imprecision 
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7272

• geometric data stored in weights of 
neural network → downstream 
operations can be difficult 
• e.g., editing
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3.  The wrong representation 
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EXPLICIT

DISCRETE

Pick the right representation for your problem!

NEURAL
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Sharp features are hard for standard 
techniques to capture!

Image: “Fourier Features,” Tancik et al., 2020
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Abstract

We show that passing input points through a simple Fourier feature mapping
enables a multilayer perceptron (MLP) to learn high-frequency functions in low-
dimensional problem domains. These results shed light on recent advances in
computer vision and graphics that achieve state-of-the-art results by using MLPs
to represent complex 3D objects and scenes. Using tools from the neural tangent
kernel (NTK) literature, we show that a standard MLP fails to learn high frequencies
both in theory and in practice. To overcome this spectral bias, we use a Fourier
feature mapping to transform the effective NTK into a stationary kernel with a
tunable bandwidth. We suggest an approach for selecting problem-specific Fourier
features that greatly improves the performance of MLPs for low-dimensional
regression tasks relevant to the computer vision and graphics communities.

1 Introduction

A recent line of research in computer vision and graphics replaces traditional discrete representations
of objects, scene geometry, and appearance (e.g. meshes and voxel grids) with continuous functions
parameterized by deep fully-connected networks (also called multilayer perceptrons or MLPs). These
MLPs, which we will call “coordinate-based” MLPs, take low-dimensional coordinates as inputs
(typically points in R3) and are trained to output a representation of shape, density, and/or color at
each input location (see Figure 1). This strategy is compelling since coordinate-based MLPs are
amenable to gradient-based optimization and machine learning, and can be orders of magnitude more
compact than grid-sampled representations. Coordinate-based MLPs have been used to represent
images [28, 38] (referred to as “compositional pattern producing networks”), volume density [27],
occupancy [24], and signed distance [32], and have achieved state-of-the-art results across a variety
of tasks such as shape representation [9, 10, 12, 13, 17, 26, 32], texture synthesis [15, 31], shape
inference from images [22, 23], and novel view synthesis [27, 29, 35, 37].

We leverage recent progress in modeling the behavior of deep networks using kernel regression with
a neural tangent kernel (NTK) [16] to theoretically and experimentally show that standard MLPs are
poorly suited for these low-dimensional coordinate-based vision and graphics tasks. In particular,
MLPs have difficulty learning high frequency functions, a phenomenon referred to in the literature as
“spectral bias” [3, 33]. NTK theory suggests that this is because standard coordinate-based MLPs
correspond to kernels with a rapid frequency falloff, which effectively prevents them from being able
to represent the high-frequency content present in natural images and scenes.

A few recent works [27, 44] have experimentally found that a heuristic sinusoidal mapping of input
coordinates (called a “positional encoding”) allows MLPs to represent higher frequency content.

⇤ Authors contributed equally to this work. Preprint. Under review.
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Abstract

Implicitly defined, continuous, differentiable signal representations parameterized
by neural networks have emerged as a powerful paradigm, offering many possible
benefits over conventional representations. However, current network architectures
for such implicit neural representations are incapable of modeling signals with
fine detail, and fail to represent a signal’s spatial and temporal derivatives, despite
the fact that these are essential to many physical signals defined implicitly as the
solution to partial differential equations. We propose to leverage periodic activation
functions for implicit neural representations and demonstrate that these networks,
dubbed sinusoidal representation networks or SIRENs, are ideally suited for repre-
senting complex natural signals and their derivatives. We analyze SIREN activation
statistics to propose a principled initialization scheme and demonstrate the represen-
tation of images, wavefields, video, sound, and their derivatives. Further, we show
how SIRENs can be leveraged to solve challenging boundary value problems, such
as particular Eikonal equations (yielding signed distance functions), the Poisson
equation, and the Helmholtz and wave equations. Lastly, we combine SIRENs with
hypernetworks to learn priors over the space of SIREN functions. Please see the
project website for a video overview of the proposed method and all applications.

1 Introduction

We are interested in a class of functions � that satisfy equations of the form

F
�
x,�,rx�,r2

x�, . . .
�
= 0, � : x 7! �(x). (1)

This implicit problem formulation takes as input the spatial or spatio-temporal coordinates x 2 Rm

and, optionally, derivatives of � with respect to these coordinates. Our goal is then to learn a neural
network that parameterizes � to map x to some quantity of interest while satisfying the constraint
presented in Equation (1). Thus, � is implicitly defined by the relation defined by F and we refer to
neural networks that parameterize such implicitly defined functions as implicit neural representations.
As we show in this paper, a surprisingly wide variety of problems across scientific fields fall into this
form, such as modeling many different types of discrete signals in image, video, and audio processing
using a continuous and differentiable representation, learning 3D shape representations via signed
distance functions [1–4], and, more generally, solving boundary value problems, such as the Poisson,
Helmholtz, or wave equations.

⇤These authors contributed equally to this work.

Preprint. Under review.
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Abstract

Implicitly defined, continuous, differentiable signal representations parameterized
by neural networks have emerged as a powerful paradigm, offering many possible
benefits over conventional representations. However, current network architectures
for such implicit neural representations are incapable of modeling signals with
fine detail, and fail to represent a signal’s spatial and temporal derivatives, despite
the fact that these are essential to many physical signals defined implicitly as the
solution to partial differential equations. We propose to leverage periodic activation
functions for implicit neural representations and demonstrate that these networks,
dubbed sinusoidal representation networks or SIRENs, are ideally suited for repre-
senting complex natural signals and their derivatives. We analyze SIREN activation
statistics to propose a principled initialization scheme and demonstrate the represen-
tation of images, wavefields, video, sound, and their derivatives. Further, we show
how SIRENs can be leveraged to solve challenging boundary value problems, such
as particular Eikonal equations (yielding signed distance functions), the Poisson
equation, and the Helmholtz and wave equations. Lastly, we combine SIRENs with
hypernetworks to learn priors over the space of SIREN functions. Please see the
project website for a video overview of the proposed method and all applications.

1 Introduction

We are interested in a class of functions � that satisfy equations of the form

F
�
x,�,rx�,r2

x�, . . .
�
= 0, � : x 7! �(x). (1)

This implicit problem formulation takes as input the spatial or spatio-temporal coordinates x 2 Rm

and, optionally, derivatives of � with respect to these coordinates. Our goal is then to learn a neural
network that parameterizes � to map x to some quantity of interest while satisfying the constraint
presented in Equation (1). Thus, � is implicitly defined by the relation defined by F and we refer to
neural networks that parameterize such implicitly defined functions as implicit neural representations.
As we show in this paper, a surprisingly wide variety of problems across scientific fields fall into this
form, such as modeling many different types of discrete signals in image, video, and audio processing
using a continuous and differentiable representation, learning 3D shape representations via signed
distance functions [1–4], and, more generally, solving boundary value problems, such as the Poisson,
Helmholtz, or wave equations.

⇤These authors contributed equally to this work.
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Fourier Features Let Networks Learn
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Abstract

We show that passing input points through a simple Fourier feature mapping
enables a multilayer perceptron (MLP) to learn high-frequency functions in low-
dimensional problem domains. These results shed light on recent advances in
computer vision and graphics that achieve state-of-the-art results by using MLPs
to represent complex 3D objects and scenes. Using tools from the neural tangent
kernel (NTK) literature, we show that a standard MLP fails to learn high frequencies
both in theory and in practice. To overcome this spectral bias, we use a Fourier
feature mapping to transform the effective NTK into a stationary kernel with a
tunable bandwidth. We suggest an approach for selecting problem-specific Fourier
features that greatly improves the performance of MLPs for low-dimensional
regression tasks relevant to the computer vision and graphics communities.

1 Introduction

A recent line of research in computer vision and graphics replaces traditional discrete representations
of objects, scene geometry, and appearance (e.g. meshes and voxel grids) with continuous functions
parameterized by deep fully-connected networks (also called multilayer perceptrons or MLPs). These
MLPs, which we will call “coordinate-based” MLPs, take low-dimensional coordinates as inputs
(typically points in R3) and are trained to output a representation of shape, density, and/or color at
each input location (see Figure 1). This strategy is compelling since coordinate-based MLPs are
amenable to gradient-based optimization and machine learning, and can be orders of magnitude more
compact than grid-sampled representations. Coordinate-based MLPs have been used to represent
images [28, 38] (referred to as “compositional pattern producing networks”), volume density [27],
occupancy [24], and signed distance [32], and have achieved state-of-the-art results across a variety
of tasks such as shape representation [9, 10, 12, 13, 17, 26, 32], texture synthesis [15, 31], shape
inference from images [22, 23], and novel view synthesis [27, 29, 35, 37].

We leverage recent progress in modeling the behavior of deep networks using kernel regression with
a neural tangent kernel (NTK) [16] to theoretically and experimentally show that standard MLPs are
poorly suited for these low-dimensional coordinate-based vision and graphics tasks. In particular,
MLPs have difficulty learning high frequency functions, a phenomenon referred to in the literature as
“spectral bias” [3, 33]. NTK theory suggests that this is because standard coordinate-based MLPs
correspond to kernels with a rapid frequency falloff, which effectively prevents them from being able
to represent the high-frequency content present in natural images and scenes.

A few recent works [27, 44] have experimentally found that a heuristic sinusoidal mapping of input
coordinates (called a “positional encoding”) allows MLPs to represent higher frequency content.

⇤ Authors contributed equally to this work. Preprint. Under review.
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We show that passing input points through a simple Fourier feature mapping
enables a multilayer perceptron (MLP) to learn high-frequency functions in low-
dimensional problem domains. These results shed light on recent advances in
computer vision and graphics that achieve state-of-the-art results by using MLPs
to represent complex 3D objects and scenes. Using tools from the neural tangent
kernel (NTK) literature, we show that a standard MLP fails to learn high frequencies
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feature mapping to transform the effective NTK into a stationary kernel with a
tunable bandwidth. We suggest an approach for selecting problem-specific Fourier
features that greatly improves the performance of MLPs for low-dimensional
regression tasks relevant to the computer vision and graphics communities.

1 Introduction

A recent line of research in computer vision and graphics replaces traditional discrete representations
of objects, scene geometry, and appearance (e.g. meshes and voxel grids) with continuous functions
parameterized by deep fully-connected networks (also called multilayer perceptrons or MLPs). These
MLPs, which we will call “coordinate-based” MLPs, take low-dimensional coordinates as inputs
(typically points in R3) and are trained to output a representation of shape, density, and/or color at
each input location (see Figure 1). This strategy is compelling since coordinate-based MLPs are
amenable to gradient-based optimization and machine learning, and can be orders of magnitude more
compact than grid-sampled representations. Coordinate-based MLPs have been used to represent
images [28, 38] (referred to as “compositional pattern producing networks”), volume density [27],
occupancy [24], and signed distance [32], and have achieved state-of-the-art results across a variety
of tasks such as shape representation [9, 10, 12, 13, 17, 26, 32], texture synthesis [15, 31], shape
inference from images [22, 23], and novel view synthesis [27, 29, 35, 37].

We leverage recent progress in modeling the behavior of deep networks using kernel regression with
a neural tangent kernel (NTK) [16] to theoretically and experimentally show that standard MLPs are
poorly suited for these low-dimensional coordinate-based vision and graphics tasks. In particular,
MLPs have difficulty learning high frequency functions, a phenomenon referred to in the literature as
“spectral bias” [3, 33]. NTK theory suggests that this is because standard coordinate-based MLPs
correspond to kernels with a rapid frequency falloff, which effectively prevents them from being able
to represent the high-frequency content present in natural images and scenes.

A few recent works [27, 44] have experimentally found that a heuristic sinusoidal mapping of input
coordinates (called a “positional encoding”) allows MLPs to represent higher frequency content.
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Abstract

Implicitly defined, continuous, differentiable signal representations parameterized
by neural networks have emerged as a powerful paradigm, offering many possible
benefits over conventional representations. However, current network architectures
for such implicit neural representations are incapable of modeling signals with
fine detail, and fail to represent a signal’s spatial and temporal derivatives, despite
the fact that these are essential to many physical signals defined implicitly as the
solution to partial differential equations. We propose to leverage periodic activation
functions for implicit neural representations and demonstrate that these networks,
dubbed sinusoidal representation networks or SIRENs, are ideally suited for repre-
senting complex natural signals and their derivatives. We analyze SIREN activation
statistics to propose a principled initialization scheme and demonstrate the represen-
tation of images, wavefields, video, sound, and their derivatives. Further, we show
how SIRENs can be leveraged to solve challenging boundary value problems, such
as particular Eikonal equations (yielding signed distance functions), the Poisson
equation, and the Helmholtz and wave equations. Lastly, we combine SIRENs with
hypernetworks to learn priors over the space of SIREN functions. Please see the
project website for a video overview of the proposed method and all applications.

1 Introduction

We are interested in a class of functions � that satisfy equations of the form

F
�
x,�,rx�,r2

x�, . . .
�
= 0, � : x 7! �(x). (1)

This implicit problem formulation takes as input the spatial or spatio-temporal coordinates x 2 Rm

and, optionally, derivatives of � with respect to these coordinates. Our goal is then to learn a neural
network that parameterizes � to map x to some quantity of interest while satisfying the constraint
presented in Equation (1). Thus, � is implicitly defined by the relation defined by F and we refer to
neural networks that parameterize such implicitly defined functions as implicit neural representations.
As we show in this paper, a surprisingly wide variety of problems across scientific fields fall into this
form, such as modeling many different types of discrete signals in image, video, and audio processing
using a continuous and differentiable representation, learning 3D shape representations via signed
distance functions [1–4], and, more generally, solving boundary value problems, such as the Poisson,
Helmholtz, or wave equations.
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Abstract. Recently, implicit neural representations have gained popular-
ity for learning-based 3D reconstruction. While demonstrating promising
results, most implicit approaches are limited to comparably simple geom-
etry of single objects and do not scale to more complicated or large-scale
scenes. The key limiting factor of implicit methods is their simple fully-
connected network architecture which does not allow for integrating local
information in the observations or incorporating inductive biases such
as translational equivariance. In this paper, we propose Convolutional
Occupancy Networks, a more flexible implicit representation for detailed
reconstruction of objects and 3D scenes. By combining convolutional
encoders with implicit occupancy decoders, our model incorporates induc-
tive biases, enabling structured reasoning in 3D space. We investigate the
e↵ectiveness of the proposed representation by reconstructing complex
geometry from noisy point clouds and low-resolution voxel representations.
We empirically find that our method enables the fine-grained implicit
3D reconstruction of single objects, scales to large indoor scenes, and
generalizes well from synthetic to real data.

1 Introduction

3D reconstruction is a fundamental problem in computer vision with numerous
applications. An ideal representation of 3D geometry should have the following
properties: a) encode complex geometries and arbitrary topologies, b) scale to
large scenes, c) encapsulate local and global information, and d) be tractable in
terms of memory and computation.

Unfortunately, current representations for 3D reconstruction do not satisfy
all of these requirements. Volumetric representations [25] are limited in terms of
resolution due to their large memory requirements. Point clouds [9] are lightweight
3D representations but discard topological relations. Mesh-based representations
[13] are often hard to predict using neural networks.

Recently, several works [3,26,27,31] have introduced deep implicit representa-
tions which represent 3D structures using learned occupancy or signed distance
functions. In contrast to explicit representations, implicit methods do not dis-
cretize 3D space during training, thus resulting in continuous representations
of 3D geometry without topology restrictions. While inspiring many follow-up

? This work was done prior to joining Amazon.
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Instant Neural Graphics Primitives with a Multiresolution Hash Encoding
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Fig. 1. We demonstrate instant training of neural graphics primitives on a single GPU for multiple tasks. In Gigapixel image we represent a gigapixel image by
a neural network. SDF learns a signed distance function in 3D space whose zero level-set represents a 2D surface. Neural radiance caching (NRC) [Müller
et al. 2021] employs a neural network that is trained in real-time to cache costly lighting calculations. Lastly, NeRF [Mildenhall et al. 2020] uses 2D images
and their camera poses to reconstruct a volumetric radiance-and-density field that is visualized using ray marching. In all tasks, our encoding and its
e�icient implementation provide clear benefits: rapid training, high quality, and simplicity. Our encoding is task-agnostic: we use the same implementation
and hyperparameters across all tasks and only vary the hash table size which trades o� quality and performance. Tokyo gigapixel photograph ©Trevor
Dobson (CC BY-NC-ND 2.0), Lego bulldozer 3D model ©Håvard Dalen (CC BY-NC 2.0)

Neural graphics primitives, parameterized by fully connected neural net-
works, can be costly to train and evaluate.We reduce this cost with a versatile
new input encoding that permits the use of a smaller network without sac-
ri�cing quality, thus signi�cantly reducing the number of �oating point
and memory access operations: a small neural network is augmented by a
multiresolution hash table of trainable feature vectors whose values are op-
timized through stochastic gradient descent. The multiresolution structure
allows the network to disambiguate hash collisions, making for a simple

Authors’ addresses: Thomas Müller, NVIDIA, Zürich, Switzerland, tmueller@nvidia.
com; Alex Evans, NVIDIA, London, United Kingdom, alexe@nvidia.com; Christoph
Schied, NVIDIA, Seattle, USA, cschied@nvidia.com; Alexander Keller, NVIDIA, Berlin,
Germany, akeller@nvidia.com.
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redistribution. The de�nitive Version of Record was published in ACM Transactions on
Graphics, https://doi.org/10.1145/3528223.3530127.

architecture that is trivial to parallelize on modern GPUs. We leverage this
parallelism by implementing the whole system using fully-fused CUDA ker-
nels with a focus on minimizing wasted bandwidth and compute operations.
We achieve a combined speedup of several orders of magnitude, enabling
training of high-quality neural graphics primitives in a matter of seconds,
and rendering in tens of milliseconds at a resolution of 1920⇥1080.

CCS Concepts: • Computing methodologies! Massively parallel algo-
rithms; Vector / streaming algorithms; Neural networks.

Additional Key Words and Phrases: Image Synthesis, Neural Networks, En-
codings, Hashing, GPUs, Parallel Computation, Function Approximation.
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ON THE EFFECTIVENESS OF
WEIGHT-ENCODED NEURAL IMPLICIT 3D SHAPES
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ABSTRACT

A neural implicit outputs a number indicating whether the given query point in
space is inside, outside, or on a surface. Many prior works have focused on latent-
encoded neural implicits, where a latent vector encoding of a specific shape is also
fed as input. While affording latent-space interpolation, this comes at the cost of
reconstruction accuracy for any single shape. Training a specific network for each
3D shape, a weight-encoded neural implicit may forgo the latent vector and focus
reconstruction accuracy on the details of a single shape. While previously consid-
ered as an intermediary representation for 3D scanning tasks or as a toy-problem
leading up to latent-encoding tasks, weight-encoded neural implicits have not yet
been taken seriously as a 3D shape representation. In this paper, we establish that
weight-encoded neural implicits meet the criteria of a first-class 3D shape repre-
sentation. We introduce a suite of technical contributions to improve reconstruc-
tion accuracy, convergence, and robustness when learning the signed distance field
induced by a polygonal mesh — the de facto standard representation. Viewed as a
lossy compression, our conversion outperforms standard techniques from geome-
try processing. Compared to previous latent- and weight-encoded neural implicits
we demonstrate superior robustness, scalability, and performance.

1 INTRODUCTION

While 3D surface representation has been a foundational topic of study in the computer graphics
community for over four decades, recent developments in machine learning have highlighted the
potential that neural networks can play as effective parameterizations of solid shapes.

The success of neural approaches to shape representations has been evidenced both through their
ability of representing complex geometries as well as their utility in end-to-end 3D shape learning,
reconstruction, and understanding and tasks. These approaches also make use of the growing avail-
ability of user generated 3D content and high-fidelity 3D capture devices, e.g., point cloud scanners.

For these 3D tasks, one powerful configuration is to represent a 3D surface S as the set containing
any point ~x 2 R3 for which an implicit function (i.e., a neural network) evaluates to zero:

S :=
�
~x 2 R3|f✓(~x; ~z) = 0

 
, (1)

Implicit Explicit
(mesh)

where ✓ 2 Rm are the network weights and ~z 2 Rk is an in-
put latent vector encoding a particular shape. In contrast to the de
facto standard polygonal mesh representation which explicitly dis-
cretizes a surface’s geometry, the function f implicitly defines the
shape S encoded in ~z. We refer to the representation in Eq. (1) as
a latent-encoded neural implicit.

Park et al. (2019) propose to optimize the weights ✓ so each shape Si 2 D in a dataset or shape
distribution D is encoded into a corresponding latent vector ~zi. If successfully trained, the weights
✓ of their DEEPSDF implicit function f✓ can be said to generalize across the “shape space” of D.
As always with supervision, reducing the training set from D will affect f ’s ability to generalize and
can lead to overfitting. Doing so may seem, at first, to be an ill-fated and uninteresting idea.

Our work considers an extreme case – when the training set is reduced to a single shape Si. We can
draw a simple but powerful conclusion: in this setting, one can completely forgo the latent vector
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where ✓ 2 Rm are the network weights and ~z 2 Rk is an in-
put latent vector encoding a particular shape. In contrast to the de
facto standard polygonal mesh representation which explicitly dis-
cretizes a surface’s geometry, the function f implicitly defines the
shape S encoded in ~z. We refer to the representation in Eq. (1) as
a latent-encoded neural implicit.

Park et al. (2019) propose to optimize the weights ✓ so each shape Si 2 D in a dataset or shape
distribution D is encoded into a corresponding latent vector ~zi. If successfully trained, the weights
✓ of their DEEPSDF implicit function f✓ can be said to generalize across the “shape space” of D.
As always with supervision, reducing the training set from D will affect f ’s ability to generalize and
can lead to overfitting. Doing so may seem, at first, to be an ill-fated and uninteresting idea.

Our work considers an extreme case – when the training set is reduced to a single shape Si. We can
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care more about reconstruction quality near surface ⇒ 
bias loss, achieved via importance sampling near surface

stratified sampling importance sampling
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How do we make a neural implicit an SDF?

add regularization term to loss function

ℒSDF(x)ℒ(x) = ℒorg(x) +



NEURAL IMPLICITS  
GEOMETRIC OPERATIONSEikonal loss

87

Implicit Geometric Regularization for Learning Shapes
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Abstract

Representing shapes as level sets of neural net-
works has been recently proved to be useful for
different shape analysis and reconstruction tasks.
So far, such representations were computed using
either: (i) pre-computed implicit shape representa-
tions; or (ii) loss functions explicitly defined over
the neural level sets.

In this paper we offer a new paradigm for comput-
ing high fidelity implicit neural representations
directly from raw data (i.e., point clouds, with or
without normal information). We observe that a
rather simple loss function, encouraging the neu-
ral network to vanish on the input point cloud
and to have a unit norm gradient, possesses an
implicit geometric regularization property that fa-
vors smooth and natural zero level set surfaces,
avoiding bad zero-loss solutions.

We provide a theoretical analysis of this property
for the linear case, and show that, in practice, our
method leads to state of the art implicit neural
representations with higher level-of-details and
fidelity compared to previous methods.

1. Introduction

Recently, level sets of neural networks have been used to
represent 3D shapes (Park et al., 2019; Atzmon et al., 2019;
Chen & Zhang, 2019; Mescheder et al., 2019), i.e.,

M =
�
x 2 R3

| f(x; ✓) = 0
 
, (1)

where f : R3
⇥Rm

! R is a multilayer perceptron (MLP);
we call such representations implicit neural representations.
Compared to the more traditional way of representing sur-
faces via implicit functions defined on volumetric grids (Wu

1Department of Computer Science & Applied Mathematics,
Weizmann Institute of Science, Rehovot, Israel. Correspondence
to: Amos Gropp <amos.gropp@weizmann.ac.il>.

Proceedings of the 37 th
International Conference on Machine

Learning, Vienna, Austria, PMLR 119, 2020. Copyright 2020 by
the author(s).

Figure 1. Learning curves from 2D point clouds (white disks) using
our method; black lines depict the zero level sets of the trained
neural networks, M. The implicit geometric regularization drives
the optimization to reach plausible explanation of the data.

et al., 2016; Choy et al., 2016; Dai et al., 2017; Stutz &
Geiger, 2018), neural implicit representations have the ben-
efit of relating the degrees of freedom of the network (i.e.,
parameters) directly to the shape rather than to the fixed
discretization of the ambient 3D space. So far, most previ-
ous works using implicit neural representations computed
f with 3D supervision; that is, by comparing f to a known
(or pre-computed) implicit representation of some shape.
(Park et al., 2019) use a regression loss to approximate a
pre-computed signed distance functions of shapes; (Chen &
Zhang, 2019; Mescheder et al., 2019) use classification loss
with pre-computed occupancy function.

In this work we are interested in working directly with raw
data: Given an input point cloud X = {xi}i2I

⇢ R3, with
or without normal data, N = {ni}i2I

⇢ R3, our goal is
to compute ✓ such that f(x; ✓) is approximately the signed
distance function to a plausible surface M defined by the
point data X and normals N .

Some previous works are constructing implicit neural repre-
sentations from raw data. In (Atzmon et al., 2019) no 3D
supervision is required and the loss is formulated directly on
the zero level set M; iterative sampling of the zero level set
is required for formulating the loss. In a more recent work,
(Atzmon & Lipman, 2020) use unsigned regression to intro-
duce good local minima that produces useful implicit neural
representations, with no 3D supervision and no zero level set
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Eeik = (∥∇fθ∥ − 1)2
Eikonal Loss

Eeik = 1

Eeik = 0

(smooth union)
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PSEUDO-SDF 
✓  eikonality 
🗴  distance property
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Figure 1: Our method allows for the computation of exact neural SDFs of CSG operations. Here, we train one network to learn
the swept volume of a stellated dodecahedron shape, parametric over the control points of the cubic Bézier path it is swept
along. Speci�c swept volumes within this parameter space are then unioned together and with cylinders, resulting in a neural
implicit which thanks to our regularization term forms an exact SDF of the word “SDF.”

ABSTRACT
Signed Distance Fields (SDFs) parameterized by neural networks
have recently gained popularity as a fundamental geometric rep-
resentation. However, editing the shape encoded by a neural SDF
remains an open challenge. A tempting approach is to leverage
common geometric operators (e.g., boolean operations), but such
edits often lead to incorrect non-SDF outputs (which we call Pseudo-
SDFs), preventing them from being used for downstream tasks. In
this paper, we characterize the space of Pseudo-SDFs, which are
eikonal yet not true distance functions, and derive the closest point
loss, a novel regularizer that encourages the output to be an exact
SDF.We demonstrate the applicability of our regularization to many
operations in which traditional methods cause a Pseudo-SDF to

This work is licensed under a Creative Commons Attribution International
4.0 License.

SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0315-7/23/12.
https://doi.org/10.1145/3610548.3618170

arise, such as CSG and swept volumes, and produce a true (neural)
SDF for the result of these operations.
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1 INTRODUCTION
Neural implicit functions have gained attention as a fundamental
representation of 3D objects due to their state-of-the-art perfor-
mance in tasks like compression and reconstruction, as well as their
generative power. They describe the boundary of a solid shape as

CSG on Neural SDFs 
[Marschner et al., 2023]

CSG Operations

Swept Volumes
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x ↦ x − f(x)∇x f(x)
Closest Point Map

Closest point loss: walkthrough
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f(x − f(x)∇x f(x))2
Closest Point Loss
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Exact SDF
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ECP = f (x − f(x)∇x f(x))2
Closest Point Loss

Pseudo-SDF
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Closest Point Loss Eikonal Loss
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Neural signed distance fields… 
(+) enable many geometric operations 
(-) are difficult to maintain
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Neural signed distance fields… 
(+) enable many geometric operations 
(-) are difficult to maintain

Geometry Processing with Neural 

Fields [Yang et al., 2021]

NeuS [Wang et al., 2021]
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Spelunking the Deep: Guaranteed �eries on
General Neural Implicit Surfaces via Range Analysis
NICHOLAS SHARP, University of Toronto, Canada
ALEC JACOBSON, University of Toronto, Adobe Research, Canada

Neural implicit representations, which encode a surface as the level set of a
neural network applied to spatial coordinates, have proven to be remark-
ably e�ective for optimizing, compressing, and generating 3D geometry.
Although these representations are easy to �t, it is not clear how to best
evaluate geometric queries on the shape, such as intersecting against a ray
or �nding a closest point. The predominant approach is to encourage the
network to have a signed distance property. However, this property typically
holds only approximately, leading to robustness issues, and holds only at the
conclusion of training, inhibiting the use of queries in loss functions. Instead,
this work presents a new approach to perform queries directly on general
neural implicit functions for a wide range of existing architectures. Our key
tool is the application of range analysis to neural networks, using automatic
arithmetic rules to bound the output of a network over a region; we conduct
a study of range analysis on neural networks, and identify variants of a�ne
arithmetic which are highly e�ective. We use the resulting bounds to develop
geometric queries including ray casting, intersection testing, constructing
spatial hierarchies, fast mesh extraction, closest-point evaluation, evaluating
bulk properties, and more. Our queries can be e�ciently evaluated on GPUs,
and o�er concrete accuracy guarantees even on randomly-initialized net-
works, enabling their use in training objectives and beyond. We also show a
preliminary application to inverse rendering.

CCS Concepts: • Computing methodologies! Shape analysis; Shape
representations; •Mathematics of computing! Interval arithmetic.

Additional Key Words and Phrases: implicit surfaces, neural networks, range
analysis, geometry processing

1 INTRODUCTION
Representing shapes presents a fundamental dilemma across visual
and scienti�c computing: point clouds and voxel grids are easy
to process e�ciently, but lack explicit connectivity information;
meshes o�er a concise and precise description of a surface, but may
require di�cult unstructured computation, etc. Recently, neural im-
plicit representations have emerged as a promising alternative for
a variety of important tasks—the basic idea is to encode a surface
as a level set of a neural network applied to spatial coordinates.
These neural implicit surfaces inherit many of the strengths which
have made neural networks ubiquitous across visual computing,
including e�ective gradient-based optimization, integration with
data-driven priors and objectives, and straightforward paralleliza-
tion on modern hardware.
However, there is a price to pay in return for these strong prop-

erties: there is no clear strategy for evaluating even the most basic
geometric queries against a neural implicit surface, such as inter-
secting a ray with the surface, or �nding a closest point. It would

Authors’ addresses: Nicholas Sharp, University of Toronto, Canada, nsharp@cs.toronto.
edu; Alec Jacobson, University of Toronto, Adobe Research, Canada, jacobson@cs.
toronto.edu.
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hierarchical
mesh
extraction

ray
casting

intersection tests

Fig. 1. Our method enables geometric queries on neural implicit surfaces,
without relying on fi�ing a signed distance function. Several queries are
shown here on a neural implicit occupancy function encoding a mine cart.
These operations open up new explorations of deep implicit surfaces.

seem that the only thing we can do with such a function is to sample
it at a point. In a sense, the powerful generality of neural networks
is exactly what makes them di�cult to query—because they can
approximate arbitrary functions with adaptive spatial resolution, it
is very di�cult to characterize the geometry of their level sets.

One popular recourse is to attempt to �t implicit functions which
not only encode a surface via their zero level set, but furthermore
have a signed-distance function (SDF) property away from the level
set: the magnitude of the function gives the distance to the surface.
Although exact SDFs are well-suited for many queries in geometry
processing, approximate neural SDFs leave much to be desired. First,
such networks are only approximately SDFs, and may overestimate
the distance to the surface, causing queries to fail unpredictably.
More importantly, the SDF property only applies after a network
has been successfully �tted; thus we cannot make use of geometric
queries in the early stages of training, e.g., to de�ne geometric
loss functions. Even more broadly, relaxing the expectation that a
network �ts an SDF opens up a broader class of neural network
formulations and objectives, such as those based on occupancy (e.g.,
as in Section 5).

Guaranteed eries on General Neural Implicit 
Surfaces via Range Analysis [Sharp et al., 2022]
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Technique: interval analysis on neural network
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We saw… 

• how to work with a classic representation 
(implicit functions) 

• implicit functions can be encoded using the 
neural network function space 

• some techniques for working with neural 
implicits 

• how to use neural implicits for geometry 
processing
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