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Introduction

Target properties of the Laplacian spectral

. . Different resolutions
functions, kernels, and distances

A &t A

Different postures

NS

—compact support & localisation at feature/ Different & partial representations
seed points for encoding local geometry :
properties & saving memory space

—smoothness & orthonormality

—intrinsic definition; ie., independent of data
embedding/representation

—multi-scale definition, in order to encode
local and global shape features

—invariance to shape transformations; eg.,
isometries for pose invariance

—efficient, stable, and parameter-free
computation

Introduction

*  Working on the space of scalar functions defined on the input domain (eg., surface,

volume), we can address

— multi-scale signal representations and denoising, by projecting the input
signals/data on a set of (multi-scale) basis functions

— sparse representations, by choosing a low number of basis functions in order to
achieve a target approximation accuracy

— compression, by quantising the representation coefficients

f=(z,y,2)

Multi-scale/sparse
representation

Compression

Introduction

* Working on the space of scalar functions defined on the input domain (eg., surface,
volume), we can address
— shape deformations, by modifying the coefficients that express the geometry of

the input surface in terms of geometry-driven or shape-intrinsic basis functions
(eg., harmonic barycentric coordinates)

Global basis Local basis

Introduction

* Working on the space of scalar functions defined on the input domain (eg., surface,
volume), we can address
— the definition of Laplacian spectral kernels and distances, as a filtered
combination of the Laplacian spectral basis

P seed point
& (p,q) ==Y alpi(p) — wi(a)|’




Introduction

Working on the space of scalar functions defined on the input domain (eg., surface,
volume), we can address

— shape correspondence and comparison, by expressing the problem with respect
to a basis and converting it to a linear or least-squares problem

Goals

Review of previous work on the definition, discretisation, and
computation of Laplacian & Hamiltonian spectral functions

— harmonic functions
— Laplacian/Hamiltonian eigenfunctions

— diffusive functions, as solutions to the heat equation

«
©)

Harmonic Laplacian eigen-functions at Diffusive functions at

function different frequencies different scales

Goals

Review of previous work on the definition, discretisation, and
computation of Laplacian spectral kernels and distances (eg.
commute time, biharmonic, wave kernel distances) by

— filtering the Laplacian spectrum

— generalising results on the heat diffusion kernels and
distances. o

Bi-harmonic dist. Diffusion dist. Mexican hat dist.

Goals

Our review will be “independent” of
— data dimensionality (surface, volume, nD data)

— discretisation of the input domain (mesh, point set) and the
Laplace-Beltrami operator




Goals

+ Analysis of preview work on the computation of the Laplacian
spectral functions, kernels, and distances in terms of

— robustness with respect to the discretisation of the input
domain: connectivity, sampling, and smoothness (eg.
geometric/topological noise)

Goals

« Analysis of preview work on the computation of the Laplacian
spectral functions, kernels, and distances in terms of

— numerical properties (eg., sparsity, conditioning number) of
the Laplacian matrix and filter behaviour
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Goals

* Analysis of preview work on the computation of the Laplacian
spectral functions, kernels, and distances in terms of

— numerical accuracy/stability: convergence, Gibbs phen.
— computational cost & storage overhead

— selection of parameters & heuristics

M npoints ® € R™"

3D Shape Space of scalar functions defined on M

In the space of scalar functions defined on M, we represent
— point-wise or piecewise linear scalar functions as vectors

— linear operators as matrices

* Numerical linear algebra is the main tool for addressing applications in spectral
geometry processing and shape analysis




Goals Outline

Focus & Novelty: unified review of the definition, discretisation, and computation of
Laplacian spectral functions, kernels, and distances, independent of the data . . . .
dimensionality and discretisation of both the input domain and the Laplace-Beltrami —Continuous & discrete differential operators
operator —Harmonic functions

Applications to geometry processing & shape analysis

Laplacian & Hamiltonian operators

—Laplacian & Hamiltonian eigenfunctions
— Geodesics & signal approximation — Heat diffusion kernels
— Diffusion smoothing, distances & descriptors — Properties & computation
— Laplacian spectral kernels & distances for shape comparison .
Applications
Previous STARs have addressed

) . ) ) — Geometry processing
— the comparison of different discrete Laplacians(zhango7]

— Laplacian spectral smoothing(Taubin99] —Shape analysis

— surface coding & spectral partitioningikamiool Laplacian spectral kernels & distances
—shape deformation based on differential coordinates(Sorkineoé] —Properties & computation
—applications to shape modeling & geometry processing!Levyoe] Conclusions

—diffusion shape analysis[Bronstein12] & comparison(Biasottil5]

Laplacian equations

Continuous case
A := div(grad)

Laplacian & Hamiltonian Harmonic equation

Af=0
Operators

Laplacian eigenvalue problem

Af = \f

Heat diffusion equation

) (O + A)F(-,t) =0
%

o
b ¥




Discrete Laplacians

Aim: review of previous work on the discretisation of the

Laplace-Beltrami operator through a unified representation

of the discrete Laplacians that is independent of the

— “dimensionality” of the input domain: surfaces, volumes,
nD data

— discretisation of the input domain: graphs, triangle/
polygonal/tetrahedral meshes, point sets

— Laplacian weights, as entries of the Laplacian matrix.

Discrete Laplacians

We represent the Laplacian matrix for graphs, meshes, and
point sets in a “unified” way as

~ -1 G. sparse, symm., positive semi-definite, L1=(D
L=B LJ

(B sparse, symm., positive definite )

B-scalar product <f,g>g:=fTBg
on the space of scalar functions

defined on the input domain

Main properties
— Positive semi-definiteness: (Lf,f)g = f ' Lf > 0

— Null eigenvalue: L1 =0

— B-self-adjointness: <I~Jf>g>B = (f, flg>B

Discrete Laplacians

Linear FEM Laplacian matrix[Reuter06] on triangle meshes
Stiffness matrix

w(i, j) = — gL € N(i)
L(i,j) ==

—ZkeN(i)w(i,j) =7
0 else

Mass matrix

[tr|+|ts]
12
B(Z,j) = Zket\égi]”k\
0

Voronoi-cotg on trianglelDesbrun99,Pinkall9s] & polygonal
mesheslAlexall Herholz11] Curvature-based Laplacians[Aflalo2013]

Anisotropic Voronoi-cotg weightslAndreux14,5hi08,kim13]

Discrete Laplacians

According tolAflalo2013] we consider the curvature-based
Laplacian

[ L.— K !AIL ]

— Ais the diagonal matrix whose ith component is the sum of the
areas of the triangles that contain the vertex i (area mass matrix)

— Kis the diagonal matrix whose entries are the
at the vertices (curvature-based weight
matrix)

— Lis the stiffness matrix with cotangent weights.




Discrete Laplacians

Laplacian matrix on point sets[Belkin03-06-08,Liu12]

-

A Area of the approximated
B(i,4) = v; Eloronoi cell ]

~

—pill? . .
_ { R (_ Ip.p; ||2) ik
— Yo LK) i=j

)

[IZ = B—lL]

Discrete Laplacians

L“’”Z{ I

B encodes tetrahedral volumes

% 22:1 lpcotag j € N(Z)

[f, = B_lLJ

Discrete Laplacians

area-driven matrix

— Linear FEM weights

* [Reuter2006,Vallet2008]
— Voronoi-cotg weights

* [Desbrun1999,Aflalo2013]
— Mean-value weights

* [Floater2003]

T-mesh

Polygonal weights

L

« [Alexa2011]
— Voronoi-exp weights
* [Liu2012]

B=I (Euclidean product)

[ * [Belkin2003-06-08]

* [Pinkall1999]
— Exp weights

)
)
Cotg weights ]
J

B volume-driven matrix

— Volumetric cotg-weights
* [Liao09,Tong03]

Tet-mesh

[IZ = B_lLJ

Unified representation of the
Laplacian matrix on surfaces,
volumes, and n-dimensional data

Laplace-Beltrami operator

The anisotropic Laplace-Beltrami operator is defined as
Ap = div(DVY)
where the tensor D is a 2x2 matrix that

— applies to vectors belonging to the tangent planes to the
surface at its points

— controls the direction and strength of the derivation from
the isotropic case (D:=l, Laplace-Beltrami operator).

Tensor!shios,Andreux14]
D := diag(¢a(km), Pa(knr)), Yals):=(1+ a|s|)_1

Km s KM minimum and maximum curvature




Hamiltonian operator

The Hamiltonian operator is defined as

H:=A+aV

— Vs a potential function, which is aimed at localising the behaviour of
the Hamiltonian eigenfunctions in specific regions of the input domain

— the trade-off parameter a controls the global and local support of the

Hamiltonian eigenfunctions Harmonic Fu nCﬁonS

Discretisation A - L H:=L+aV

Hamiltonian
4 eigenfunctions
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Harmonic functions

Harmonic functions as solutions to the Laplace
equation (eg., Dirichlet boundary conditions)

Af=0 M
f=9 OM

(o)) ‘¢3 ‘\\

Yi(p;) = d4j
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Laplacian Eigenfunctions

P1




Laplacian eigenfunctions

Properties of the Laplace-Beltrami operator
— self-adjoint: (Af,g),=(f,Ag)>, Vf,g

— positive semi-definite: (Af,f),>0, Vf. In particular, the
Laplacian eigenvalues are positive

— locality: the value Af(p) does not depend on f(q), for any couple of
distinct points p, q

— null eigenvalue: the smallest Laplacian eigenvalue is null and the
corresponding eigenfunction ¢, Ap=0, is constant

Laplacian eigenbasis

(A= Qo 0)iZ, Adn = Mo

Laplacian eigenfunctions

The generalised Laplacian eigensystem of (L,B)
( LXZ' = /\zBXz <Xi,Xj>B = 5ij )\1 S )‘i-l—l )
defines a set of n linearly independent functions that

— can be used for the solution to discrete differential equations
involving the Laplacian matrix (eg., heat equation)

— have a different behaviour: eigenfunctions associated with small/
large eigenvalues have a smooth/irregular behaviour

-

Laplacian spectrum - Computation

The O(n2) computation time and storage overhead of the whole Laplacian

spectrum are addressed by computing only k eigenpairs - k<<n: O(kn)
comput. & storage cost(Golubsd]

— shift method computes spectral bands centred around a given eigenvalue
— inverse method computes k smaller/larger eigenvalues

— power method improves the convergence speed of the computation, by
considering a power of the input matrix

Numerically unstable computations of the Laplacian eigenpairs are due to
— multiple eigenvalues, associated with high dimensional eigenspaces

— switched and/or numerically close eigenvalues with respect to the
approximation accuracy of the solver of the Laplacian eigenproblem

and are independent of the quality of the discretisation of the input domain.

Laplacian spectrum - Stability

Perturb the input Laplacian matrix L + ¢E and compute the
eigenvalue of the new proble

( (M(e),x(e)) : (f; + eE)x(e) = A(e)x(e), A(0) = A, x(0) =x )

whose initial conditions are the eigenpairs of (L,B).

The size of the derivative \’(0) indicates the variation that a

Laplacian eigenvalue undergoes when the Laplacian matrix is
perturbed.

For a single eigenvalue, the upper bound

(N (0) < [[Ex|s < |[ElB
shows that its computation is stable.




Laplacian spectrum - Stability

Considering an eigenvalue of multiplicity m, m>1, and the
approximation

(20 ~ X~ + 0Y™)

a perturbation of order 10-m induces a change of order 0.1.
For the perturbation of Laplacian eigenvectorslGolubsd],
T
x; Ex;
i — x5l < €Y | + O(e?)
i
close eigenvalues generally induce numerical instabilities.

Laplacian eigenspaces are generally stable to perturbations
(—>projection operator)

Applications

Spectral graph theory & Machine Learning

— Graph partit—ioning[chung97,FiedIer93,Mohar93,KorenO3]

— Reduction of the bandwidth of sparse matriceslGolub89,Alpert99,Diaz02]
— Dimensionality reduction with spectral embeddings[Belkin03 Xiao10]
Shape analysis

— Shape segmentationlLiu07,zhang05]

— Shape correspondencel!ain07,jain&zhangko7]

— Shape comparison[Marinill,Reuter05-06-07,Rustamov07,Wardetzky07,Jain06-07]

— Spectral kernels and distances

* bi-harmonic kernels/distancesltipman10,Rustamov11]

* diffusion kernels/
distances/Bronstein10-11,Coifman06,Gebal09,Lafon06,Luo09,Hammond11,Patane10]

» wave kernels/distances/Bronstein11,Aubry11]

Applications

Geometry processing
— Data reduction(Belkin03-08] & compression[Karniool
—Discrete differential forms[Desbrun99-05,6u03]

—Design of low-pass filters & Implicit mesh
fairing[Taubin95,Desbrun99,KimOS,PinkaII93,ZhangO3]

—Mesh watermarking & Geometry compression[Obuchio1-02,karni00]
—Approximation and smoothing of scalar functions[Patane13]
—Surface deformationl(Levy06,Sorkine04,Vallet08,zhang07]

—Local/global parameterisation!Floater,Patan&04-07,zhang05]

—Surface quadrangulation(Pong0s]

Heat Equation & Kernel




Heat diffusion equation

Surface

{ (O +A)F(,t) =0
F('ao):f

Heat diffusion equation

The solution to the heat equation can be expressed in
terms of

— the Laplacian spectrum (), ¢,,)2
“+oo

F(p,t) = (Ki(p,), f2. | Ki(p.@) = Y _ exp(—Ant)dn(p)dn(q)
n=0

— the action of the diffusion operator ¢, := exp(—tA)

+o00
F(-,t) = exp(—tA) f = Y exp(=Aut)(f, bn)26n

n=0

Heat diffusion equation

On surfaces, the diffusion kernel encodes local
geometric properties: ie.,

— for an isometry between 2 manifolds[S0G09,Grio6]
o:N—=0Q  KN(p,q) =E2(®(p), (q))

— at small scales[soGo9, var67] the auto-diffusive function
encodes the Gaussian and curvature

| (Amt)7 (1 +1/3tk(p)) + O(t?),
Kt(pv p) ~ { (47Tt)3/2(1 + 1/68(% t— Oa

Discrete heat kernel

The solution to the discrete heat equation is

F(t) = Kf, (Kt = exp(—ti))

Considering the spectral factorisation of the Laplacian matrix
(B area/volume-driven matrix)

~ I' := diag(\;)!; Lapl. eig. val.
L=XI'X'B x_ !

= [X1,..., x,] Lapl. eig. vec.

the resulting discrete heat kernel K; admits the spectral
representation

(Kt _ XFtXTB) I, = diag(exp(— M)l




Previous work

Previous work for the computation of the heat kernel and the
corresponding diffusion distances can be classified as

— geometry-driven approach

» multi-resolution prolongation operator
— numerical approaches

e truncated spectral approximation

r

* theta-method method
* power method
— numerical approaches - higher precision
* Pade-Chebyshev approximation
e polynomial approximation

_ * Krylov subspace projection

~
Spectrum-free

Previous work

* Truncated spectral approximation of the heat kernel considers the
contribution of the Laplacian eigenvectors related to the k smaller
eigenvalues

F(t) =) exp(—\it)(f, x:)Bx;

=1

* Main motivations
—exponential decay of the filter as the eigenvalues/time increase
—the computation of the whole spectrum is not feasible for a large n

—numerical instabilities due to close/multiple eigenvalues, associated
with“high” dimensional eigenspaces (eg., symmetric shapes)

* Remark: for small scales, we must compute a large number of
eigenpairs to achieve a good approximation accuracy

Previous work

* Truncated spectral approximation (k=200)

Previous work

* Approximate the heat kernel with multi-resolution
prolongation operatorsivaxmanio]
— using k eigenpairs on a specific level of a multi-resolutive shape
representation

— selecting k according to time and the shape resolution in the
hierarchy

— prolongating the heat kernel from a given resolution to the input
shape

S




Previous work

We discrete the temporal derivative as a finite difference and
introduce a convex combination of the values of the solution at
consecutive times: @-method

(0 + A)F ( H=g | @F ) - FEml — 0
{ F(-,0) = L OAF(p, te) + (1 — O)AF(p, t) = . > A
= g(P; tk+1)- — g

Special cases: Euler forward (theta=0) & backward method
(theta=1)

In geometry processing: Euler backward method for
fairing(Desbrun9g]

Previous work

Limitations
— Need to select/adapt parameters (eg., number of eigenpairs, iterations,
resolution in the hierarchy) to shape/volume details and selected scales

— No a-priori estimation of the approximation accuracy with respect to
the selection of k Laplacian eigenpairs

Goal: review of numerical approaches with a higher approximation

accuracy achieved by applying a (rational) polynomial approximation to the
exponential filter

— No computation of the Laplacian spectrum

— High approximation accuracy, adjusted through the selection of the
polynomial degree

— No selection of input parameters

Spectrum-free approximation

3D Shape 7 Volume‘

[F(-, £) = exp(—tA) f}

Chebyshev approximation

Idea - 1D caselGolubs9d]

— Compute the best (r,r)-degree rational approximation
crr(x) of ex with respect to the l-norm

T
exp(x) ~ ag — Z T )_1
= \ coeff\ poles

— |l error between ex and its rational approximation is
lower than =10 (unif. rational Cheb. constant)




Chebyshev approximation Chebyshev approximation

 Apply the (r,r)-degree Padé-Chebyshev rational * The solution is approximated in a low dimensional space
approximation to the exponential representation of the generated by (r+1) functions, which are induced by the input
solution to the heat equation(Hammond11,Patane1a] domain, the initial condition f, and the selected scale t.
S (M 6325
(F(-,t) = exp(—tA)f ) | Change of F(-,t) = Z exp(ZAnt)(f, dn)20n A;’ - ;\L::;
- ...~ | basis functions n=0 e
~agf— Z o (tA +0;id) - f
i=1 « Convergence. The resulting Pade-Chebyshev approximation
" converges to the solution as the polynomial degree increases
=aof + Zaigi‘: ((tA + 0;id) g; = —f] g POy &
=1
1E-(58) = F (5 )ll2 < lerr (1) — exp(, ) [[oo [l f 112

« Convert the diffusion problem to a set of r differential

< orefll2
equations that involve only the Laplace-Beltrami operator

<107 fll2 = 0, 7 — +o0

Chebyshev approximation Chebyshev approximation

@ seed point

Applying the Chebyshev approximation to K; = exp(—ﬂ:), we get the (P'C' approx., r = 7)
spectrum-free computation of the solution to the heat equation

T
K. f =~ aof + Z ;g;
i=1
that requires the solution to r sparse, symmetric linear systems

No input parameters (degree r is fixed)

Numerical solver

— apply an iterative solver for linear systems (e.g., minres):
0O(rn)-O(rnlog(n)), according to the sparsity of (L,B)

— pre-factorise the matrix B (if not diagonal); only for several values of t or
several initial conditions F(-,0)=f (eg., diffusion distances)

S0




Chebyshev approximation

Scale 5y

0ff
B

Scale 53

Chebyshev approximation

O seed point

Chebyshev approximation

Isotropic diffusion Anisotropic diffusion[Boscainilé]

Voronoi-cotg Laplacian Anisotropic Laplacian
WeightS[Desbrun99,Pinkiall99] WeightS[AndreuxM]

Numerical stability

* The Cheb./polyn. approx. of exp(-tC) is unstable if | |tC| |2 is too large.
- From the upper bound [[tB™'L]||5 < t/\maX(L)/\r;iln(B)
a well-conditioned matrix B guarantees that | |tB-1L| |2 is low.
* If the Laplacian matrix is ill-conditioned, then we can apply specialized
Laplacian pre-conditionerslkrishnan13],
t=104 1=1,...,r

t=10"

] .
1B
=1 Ko t=10"%

s ) 10°) %
_t=10 { t=10""

o
107

t=10"! {
| 21




Numerical stability - Gibbs phen.

(f() = Kt (p, ) Z 0) Padé-Chebyshev approx. r:=7
1

t=10"

Robustness

Sampling density

Robustness




Robustness

SHREC’16: Matching of Deformable
Shapes with Topological Noise -
[Lahner16]

Topological noise

Robustness

-
4,'?;‘
Y

Almost isometric deformations

SHREC’10: Robust shape
retrieval - [Bronstein10]

Polynomial approximation

Rational polynomial approximation(Pusalll of the exponential
filter based on quadrature formulas derived from complex
contour integrals.

Polynomial approximation[Golubsd]
— applies the Taylor power series to the exponential matrix (first

r terms) - -
[exp(—t]z) = Z (_ZI'J) ]
n=0 :

— has an accuracy lower than the Padé-Chebyshev method
(point-wise instead of uniform convergence)

— generalises the 1st order Taylor approximation applied by the
power method

Polynomial approximation

The discrete spectral kernel is approximated as

s
=aofo+ Y g, & :=L'f=(B'L)f
=1

If B is not diagonal (eg., linear/cubic FEM weights), then
each vector giis computed through the recursive relation

~ _ o Bglsz 0
L Tif IS AY —
( gi = L'f = (B~'L)'f {BgingHZ 2,1 J

and we solve r sparse and symmetric linear systems.




Computational cost

Computational cost for
the evaluation of the
heat kernel

X10

Summary

Method

|| Numerical scheme

| Scales |

Comput. cost

Linear approximation

i
Time (sec.) — — Rigs(k = 500)
r — — Eigs(k = 100)
— — Cheb.(r =17)
% — — Cheb.(r =5)

Trunc. spec. approx. F.(r) = Y5 exp(—Ait) (£, x;)px; | Any O(kn)

Euler backw. approx. (tL+1)Fyp () = Fi (1) Small | O(t(n))

T order Taylor approx. BF(t) = (B—rL)f Small | O(t(n))

Krylov/Schur approx. Projection on Any O(mt(n)),B#£1
{g = B'L)}", O®n),B=1

Polynomial approximation

Power approx. F(t)=Y",gi/i! Any O(mt(n)),B#1

g =Lt O(n),B=1
Rational approximation

Padé-Cheb. approx. F(t)=aof+ Y/, g Any O(rt(n))
(rL+6;B)g; = —o;Bf

Contour integral approx. || F(r) =Y!_; a;g; Any O(rt(n))
(0y)i—1 quadr. coeff.

Applications
Signal Smoothing

@
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Applications

Applications of the heat diffusion kernel and distance include
— multi-scale representations of functions [Rosenberg97,Patan&10-13]
— shape comparison with heat kernel shape signatures

[Bronstein11,Gebal09,Memoli09,0vsjanikov10,Sun09]
« intrinsic to the input shape
e isometry-invariant
* multi-scale (local vs. global details)
— diffusion distances & descriptors
[Aubry11,Belkin03,Coifman06,Gine06,Litman14,Singer06,Smola03]
« data matching [Lafon06]
« gradient [Wang09], critical points computation [Luo09]
* data representation and classification [Smola03]
— shape segmentation [DeGoes08,Gebal08]
— dimensionality reduction [Belkin03,Roweis00,Xiaoa10,Tenenbaum00]

— clustering [Chapelle03]




Diffusive smoothing: optimal scale Diffusive smoothing: optimal scale

{ ) 4 N

(O + A)F(-,t) =

F(,0)=f Residual error Energy
Il Tet) = (1FC.£) = Fll, 1FCB)]12)
[y o [ e\ e 0

O ‘optimal t

1/2

[I1£13 ~ |<fi, $0)2|?]
o )

| scale

R R (O
-~ J
4 % »

X w0
BO364y

|
LT

LR}

Applications
Diffusion distances
& descriptors

soasd)
saauy)

|
L2 )
se3uqp
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o

_:_' Diffusion smoothing
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Approx. error: P.C. <1%; trunc. specr. meth. 12% (k=100)-13% (k=1K) sele e




Geodesics approx. via heat kernel

Geodesic distances can be expressed in terms of the heat kernel as

dG(pa CI) = - }i_l;%(élt log Kt(pa CI)) [Varadhan’s formulalVaradhan67]]

—OtherwiselCrane13],
* Integrate the heat flow 8.F(-t) = AF(-t) (for a fixed t)
* Evaluate the vector field X := —VF(-,t)/||VF(-, )2
* Solve the Poisson eq. A¢ = divX

Optimal transportation distances are approximated through the

solution of two sparse linear systems that involve the heat
kernel(Solomon15] |

In both cases, we can apply the spectrum-free approach to
guarantee an accurate approximation of the heat kernel.

Heat diffusion distance

Idea: associate a shape M with the functional space
— F(M):={f:M—>R, f scalar function on M}
* eg., Laplacian eigenproblem, heat equation, etc

and define the metric space (M,dw), equipped with diffusion
distances derived from K; on F(M) (diffusion geometry).

Ki(p,) \

(d(p. @) := [ Ki(p, ) — Kl ")]12)

Diffusion distance
Kia)

Heat diffusion distance

F(P)
Ki(pi,) ” ’ ”B
O
N
(@)}
Kt(pJ'?')
(df(pi,pj) = || K¢(pis ) — Kt(ij)H%

=1

( = Zexp(_QAlt)levei —e;)sl? J

Heat diffusion distance

Apply the Pade-Chebyshev of the heat kernel to
approximate diffusion distances.




Approximation accuracy

Pade-Chebyshev approximation versus truncated spectral
approximation of the diffusion distances (r=5)

(o err.
=101 t=0.01

Pade-Chebyshev approximation error: for all t, lower than 8.9*10-6

Approximation accuracy

Comparison of the accuracy of
the diffusion distances at
different scales.

Robustness




Computational cost

Truncated spectral approximation: O(kn)
Padé-Chebyshev approximation: O(r7(n))

— solution to the heat equation or evaluation of the
diffusion distance between 2 points

O(7(n)) lin. syst. solver
7(n) =~ n, nlogn

— one-to-all distance (no pre-factorisation): O(rnt(n))
— one-to-all distance (pre-factorisation of B):O(nlogn + rn)

* if B is not diagonal

Diffusion signatures & descriptors

Heat kernel signature
+oo

HES(p) ==Y exp(~Ant)|n(p)[?

n=0

Diffusion embegging

DE(p) := (exp(—An)dn(P))1Z5
Wave kernel signature

+o0o
n=0

Diffusion signatures & descriptors

The heat kernel matrix K:[Bronstein10,Patane14] jg
— self-adjoint with respect to the B-scalar product

— intrinsically scale-covariant (ie., with no a-posteriori
normalisation)

(Ki(aM) = Koz (M)

— scale-invariant through a normalisation of the Laplacian
eigenvalues

(Ki(aM) = Ki(M))

— stable to noise and irregular sampling, thus improving the
robustness of matching based on heat kernel
descriptorsISHREC10]

Heat kernel & shape comparison

Diffusion descriptors for shape comparison have
been extensively analysed in SHREC contexts.

\ ) -
BN AL
) \ 2l
Z
\ s $1 s A \
J\ IR 4 i
RONSTEIN, A."M.,"BRONSTEIN, M. M., CASTELLANI, U., FALCIDIENO, B.,| [BRONSTEIN, A. M., BRONSTEIN, M. M., BUSTOS, B., CASTELLANI, U., CRISANI,
FUSIELLO, A., GODIL, A., GUIBAS, L., KOKKINOS, L, LIAN, Z., OVSJANIKOV, M., FALCIDIENO, B., GUIBAS, L. J., I. KOKKINOS, V. M., ISIPIRAN, L., OVs-
M., PATANE, G., SPAGNUOLO, M., AND TOLDO, R. 2010. Shrec 2010: robust JANIKOV, M., PATANE, G., SPAGNUOLO, M., AND SUN, J. 2010. Shrec 2010:
large-scale shape retrieval benchmark. Eurographics Workshop on 3D Object Re- robust large-scale shape retrieval benchmark. Eurographics Workshop on 3D Ob-

trieval. Ject Retrieval.
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Distances on 3D shapes

Geometry-driven approaches: define the distance on the input shape;
eg., geodesics[MitchelI87,SurazhskyOS,KimmeI98,Lipman10]

Functional approaches: define the distance in the space of functions on
the input surface
— diffusion distances!Bronstein10-11,Coifman06,Gebal09,Lafon06,Luo09,Hammond11,Patane10]
—commute-time & bi-harmomic distanceslLipman10,Rustamov11]
—wave kernel distanceslBronstein1l,Aubry11]
—random walks[Fouss05,Ramani13]  Mexican hat wavelets & distanceslHou12]

Mixed approaches: geodesic distances & optimal transportation
distances are approximated in the geometric and function space

—approximation through the heat kernellCrane13]

— multi-dimensional Sca|ing[BronsteinOG,PanozzolS]

Spectral distances

Aim: review of previous work on the definition and
computation of

— the commute-time, bi-harmonic, diffusion, wave kernel
distances

— the corresponding embeddings and shape descriptors
in a unified way by
— introducing the spectral distances, which are defined by
filtering the Laplacian spectrum

— interpreting the main properties of the spectral distances in
terms of the properties of the corresponding filter function

Spectral distances

Idea: define spectral distances(Bronsteinll,Patane14-16]
by filtering the Laplacian spectrum

d*(p,q) = ZSO()\ )|én(P) — dn(a)]®

\{(an,)\n) ;'L_i% : Aqbn — )\nqbn)

( @ :RT — R filter function )




Spectral distances

f 5% exp(—s)

\

2 +00
[ (P,q) = Y ?*(An)[6a(P) — du(a)? ] \

=0 Bi-harmonic dist.  Diffusion dist. Mexican hat dist.
Ps) = 572 Gis) =exp(—st)  @R(s) = s exp(—st)
¢’(s) | Distance
=1 ~ ey
'\_,, ;;;l]llll.-(llll( — Diffusion distances[Bronstein10-11,Coifman06,Gebal09,Lafon06,Luo09,Hammond11,Patané10]
{ R mnarm.
s~% | Poly-harm. — Commute-time & bi-harmomic distanceslLtipman10,Rustamov11]
e~ | Heat diff. — Wave kernel distanceslBronsteinl1,Aubry11]
=" | Wave ker — Random walks(Foussos,Ramani13] Mexican hat wavelets & distanceslHou12]
 ——

Spectral distances

Commute-time distancelBronsteinll] gre defined the integral of the
diffusion distance with respect to scale () := s~ 1/2

2 1 oo 2
d*(p,q) = 3 di (p, q)dt
0

+oo
=" 260 () — dula))?
n=0

. .—1
Bi-harmonic distances(Ovsianikov12,Lipman10,Rustamov11] (,0(3) =S

— for small distances, they have a nearly geodesic behavior

— for large distances, they encode global shape properties

Spectral distances

Bi-harmonic distances

Spectral distances

The filters are defined

— analytically and analogously to Laplacian signal
Smoothing[Desbrun99,KimOS,Taubin95-96,Zhang03]

— by applying supervised learninglAflalol1litman14] on 3 data set of 3D shapes

* optimal spectral signatureltitmanidl: [inear combination of B-splines by
minimising a task-specific loss function

— by controlling their behaviour
« decay to zero, periodicity
* normalisation with respect to geometric properties of the domain
in such a way that the corresponding distances are
* multi-scale and/or invariant to isometric transformations
* smooth and/or localised in both time and frequencyfHammond11],




Spectral distances

The smoothness, locality, and encoding of local/global shape
properties depend on the convergence of the filtered Laplacian
eigenvalues to zero

— increasing the filter decay to zero

* global shape properties are encoded by the spectral
distances, by reducing the influence of eigenfunctions
associated with small eigenvalues in the spectral distances

— reducing the filter decay to zero

* local shape properties are encoded by the spectral
distances.

Spectral distances

Given a strictly positive, square-integrable filter that admits the
power series’ representation oo

o(s) = Z aps”

we define the spectral operator "0

( o(f) == p(A)f = Zw <f,¢n>2¢nj

which is well-defined, linear, continuous, and

+oo
O(f) = (Ky, f)2 [me Q=Y so(An>¢n,(p>¢>n(q)J
n=0

where K, is the spectral kernel.

Spectral distances

Analogously to the diffusion distances, previous work has

defined the equivalent representations of the spectral
distances

d*(p,q) = \|‘1>(5 ) — ®(dq)lI3

Spectral operator

_ Z 90 |¢n ) an (Q)‘z Lapl. spectrum

= Hch(pa ) — Ky(q, )H% Spectral kernel
= qu(p) - ?b(q)H% Spectral embed.

¢ M‘)£27¢( ) ( ( )an( ))

Discrete spectral distances

Applying the generalised eigendecomposition of the
Laplacian matrix, the discrete spectral kernel is

L=XI'X'B (K,=¢@L))XeM)XB
and the resulting discrete spectral distance is
d*(pi,p;) = [[Ky(e: — €))p

=> Y N)l(xi, i —e;)B|?
=1




Discrete spectral distances

We generalise previous work on the computation of the
diffusion kernels/distances to the case of spectral distances

— spectrum-free approximation: considers the representation
of the distance in terms of the spectral kernel and apply the
* polynomial approximation of the filter
» Pade-Chebyshev approximation of the filter
* Krylov sub-space projection
— truncated spectral approximation: applies the

representation of the distances in terms of the Laplacian
spectrum.

Spectrum-free computation

Recalling that

— the spectral distances are defined in terms of the
spectral kernel as d(pi, p;) = [[Ky(e; — €;)[IB

— the spectral kernel is achieved by applying filtering the
Laplacian matrix as K, = ¢(L)

we compute and apply the best r-degree polynomial
approximation of the selected filter to the Laplacian matrix

-d Tayl
K, = D)o D)
Filter map — \ pr(8) = Z ;s
=0

Spectrum-free computation

Spectrum-free computation

Qs)=s"

\4

N
\

(@) € = 1.2%107°

\

N
S

=

(d) oo =42x107*

™
)

f

(C) oo =2.3x 1077

A
o™

¢

(e) €00 = 1.2 %

(f) €00 =2.1x 1074

Linear FEM & Voronoi-exp Laplacian matrix




Truncated spectral approximation

The spectral distances can be approximated by considering the
contribution of the Laplacian eigenvectors related to the
smaller eigenvalues

d?(p; -~@ 2(\ . —e;)B|?
(pzapj) NZSO ( l)|<xl’el eJ>B|
1=1

— accurate approximation for filters with a fast decay
(periodic filter: eg., wave kernel?)

— the number of selected eigenpairs must be adapted to local
shape details, target approximation accuracy, parameters
(eg., time for wave kernel distances): not a trivial task

Approximation accuracy
‘ ls erT. \994

h ©1(s) :== s~ exp(—ts)
10 \»91 P2 ¥3 ©a(s) = s71/2 exp(—ts)
\ p3(s) =8~
(5) 1= 5112

904 S) .=
k
10 o 1 2 3
S 10 10 10 10
1

\

— Truncated spectral approximation: | error
between the ground-truth spectral distances
induced by different filters and their
approximation with k Laplacian eigenpairs

Approximation of spectral distances

— Spectrum-free approximation: r:=8 degree

K polynomial and I error lower than 104

Discrete spectral distances

Truncated spectral approximation
— computes k Laplacian eigenpairs in O(kn) time

— uses the Laplacian eigenpairs to quickly evaluate distances
induced by different filters on the same surface

— generally has an accuracy lower than the spectrum-free
approach.

Spectrum-free approximation

— Distance evaluation between two points is reduced to solve r
sparse, symmetric, linear systems: O(r7(n))

— Evaluation of the one-to-all distance
* no factorisation of B: O(rn7(n))
« with factorisation B: O(n logn + rn)

Conclusions




Laplacian spectral
approaches

(A, )

Functional
approaches

Main (target) properties

+ Intrinsic & multi-scale definition
Invariance to uniform scaling/isometries
Generalisation to n-D data

Easy computation

Approximation of geodesic & optimal
USESPETIRUCHICRICRS Laplacian spectral functions, kernels & distances

Conclusions

Review of previous work on

— the Laplacian spectral functions, kernels, and distances, defined by filtering the
Laplacian spectrum and as a generalisation of the commute-time, bi-harmonic,
diffusion, and wave kernel and distances

— their discretisation according to a unified representation of the Laplace-
Beltrami operator, which is “independent” of

» the data dimensionality (surface, volume, nD data) and discretisation
(mesh, point set) of the input domain

* the selected Laplacian weights
— the computational aspects behind their evaluation
e approximation accuracy & stability
» computational cost & storage overhead
* use of input parameters & heuristics

— their main applications to geometry processing and shape analysis

Conclusions

Future work & possible collaborations

— Definition of shape-aware functions for time-varying & multi-
dimensional data (eg., graphs, videos);

— Analysis of the constraints on the filter in order to define “optimal”
spectral kernels and distances for applications in geometry processing
and shape analysis

— Application/specialisation of the spectral basis functions to
* shape analysis

« definition of shape-aware functional spaces where we approximate
signal or solve PDEs

Course material & Papers

— http://pers.ge.imati.cnr.it/patane/SGP2019/Course.html
— http://pers.ge.imati.cnr.it/patane/Home.html
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