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Convexity
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is a convex optimization problem if            
and          are convex functions



Convexity
Equality constraints must be affine.

Equivalent:
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Problems with convex objectives and convex constraints

can be solved to global optimality.
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Convex problem classes
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Linear program (LP)
General form
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linear constraints
i.e.

each constraint is a half space
i.e.

feasible set is a polyhedron

linear objective

optimum point 
at corner



Example LP
Find the largest ball enclosed in a polyhedron.

Ball 

Ball of radius r is inside halfspace             if
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Quadratic program (QP)
General form
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quadratic objective

Negative definite Q



Quadratic program (QP)
General form
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optimum on 
boundary

linear constraints
i.e.

each constraint is a half space
i.e.

feasible set is a polyhedron

quadratic objective



Example QP
Distance between two polyhedra:

Quadratic program
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Real time object deformation [Jacobson et al., 2011]

Example QP
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Second order cone program (SOCP)
General form
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cone constraint

linear objective



Example SOCP
Dynamical optimal transport [Lavenant et al. 2018]
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cone constraint

linear objective



Semidefinite program (SDP)
General form
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Example SDP
Surface correspondence [Maron et al. 2016].

Can relax final two constraints:
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LP ⊂ QP ⊂ QCQP ⊂ SOCP ⊂ SDP
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Hierarchy of convex programs



Algorithms
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Finding a feasible point
Start with:

Replace with a feasibility problem

33



Finding a feasible point
Start with:

Replace with a feasibility problem
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Active set methods
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Active set
Treat problem as equality constrained.

Maintain an active constraint set A:

● If an inequality constraint is violated add 
it as an equality constraint to A.

● Remove constraints that aren’t active.
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Active set
Treat problem as equality constrained.

Maintain an active constraint set A:

● If an inequality constraint is violated add 
it as an equality constraint to A.

● Remove constraints that aren’t active.

Recall: the optimum is on the boundary. 
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Active set
Start with feasible       . 
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Active set
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Active set method
● Many variants

○ primal, dual, primal-dual methods, etc.

● Many specializations
○ LPs, QPs, ...

● Good choice for problems:
○ with linear and quadratic constraints
○ small or moderate amount of constraints

● Disadvantage
○ may require many iterations
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Interior point methods
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Interior point method
Replace constrained optimization by unconstrained problem.

Use the barrier function:
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Logarithmic barrier (smooth and convex approximation)

Interior point method
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large t small t

accuracy high low

speed low high



Interior point method
Solve

using unconstrained methods.

Set             and iterate until 
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Interior point method
● Many variants

○ primal-dual methods, reflective, etc.

● Many specializations
○ LPs, QPs, SDPs, ...

● Good choice for problems:
○ with many constraints
○ non-convex feasible regions

● Disadvantage
○ limited warm start capabilities 
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Summary
Optimization is everywhere in geometry processing.

We’ve looked at algorithms for:
● Unconstrained optimization
● Equality constrained optimization
● Inequality constrained optimization

Take home messages: 
● Convexity is crucial!
● Use the most specialized algorithm for best performance.
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Further reading
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Yurii Nesterov
Lectures on Convex Optimization

Springer, 2018

Jorge Nocedal and Stephen J. Wright
Numerical Optimization

Springer, 2006

Stephen Boyd and Lleven Vandenberghe
Convex Optimization

Cambridge University Press, 2004



Software
● Solvers:

○ Software from COIN-OR foundation
○ CPLEX
○ Gurobi
○ Mosek

● Interfaces
○ CVX
○ CoMISo

● Programming languages with good support
○ Python
○ MATLAB
○ Julia
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