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Inequality constrained optimization
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f:R* =R
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Geometric interpretation
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Geometric interpretation

gs(z) =0 feasible
region

minimize  f(z)
X

subject to g;(z) <0,i=1,..., m.




Convexity

Searching for globally optimal solutions usually requires convexity.
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Convexity

minimize  f(z)
X

subject to  g;(z) <0,i=1,...,m.

non-convex

feasible region

is a convex optimization problem if f(z)
and g;(z) are convex functions
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Convexity

Equality constraints must be affine.

Equivalent:

g(z) =0
g(z) <0and g(x) >0
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Problems with convex objectives and convex constraints

can be solved to global optimality.
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Convex problem classes
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Linear program (LP)

General form

minimize c'x
xr

subject to Ax <b
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Linear program (LP)

General form
linear objective

e

2
minimize cTx
X
subject to Ax <b
\ A J
linear constraints
ie.
each constraint is a half space
Le.

feasible set is a polyhedron
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Linear program (LP)

General form
linear objective

e

2
minimize cTx
X
subject to Ax <b
\ A y
linear constraints
ie.
each constraint is a half space
Le.

feasible set is a polyhedron

optimum point
at corner
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Example LP

Find the largest ball enclosed in a polyhedron.

Ball B={zc+u||ull2 <r}

Ball of radius r is inside halfspace a7z < b if

a’x +r||all2 <b

minimize —r
T,

subject to a]x +71||aills < b, i =1,...,m.
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Quadratic program (QP)

General form
quadratic objective

e
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Quadratic program (QP)

General form
quadratic objective
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Quadratic program (QP)

General form
quadratic objective

e

- ) N
. 1
minimize §xTQa: +pTx+c

subject to Ax <b
N T y
linear constraints
ie.
each constraint is a half space

Le.
feasible set is a polyhedron

optimum on
boundary
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Example QP

Distance between two polyhedra:

dist(P, Q) = inf{|p—qll2 | p € P,q € O}

Quadratic program

minimize
x=(p,q)

Ip — qll3

subject to App < bp

Aoq < bg

Xdist(?, Q)
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Example QP

Real time object deformation [Jacobson et al., 2011]

wj, j:l,...,

— 1
arg min E 5/ | Aw, ||?dV
mj:1 Q
subject to: wj|y, = djk

wj| - is linear

Z’wa‘(p) =1
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Second order cone program (SOCP)

General form linear objective

/
e

minimize a'x
L

subject to  [[A;xz + bill2 < clz+d;, i=1,...,m.
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Second order cone program (SOCP)

Z3
General form linear objective A
/
e
minimize a'x
X
subject to |4z + bl < cJx+d;i, i=1,...,m. R
AN

AN

cone constraint

Vi + a3 < xo
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Example SOCP

Dynamical optimal transport [Lavenant et al. 2018]

linear objective

/

minimize / good,uo—/ otdpt
® M M

1
subject to Oy + §||V90||§ <0, on [0,1] x M.

AN

cone constraint

=1
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Semidefinite program (SDP)

General form

-~ N
« . X — i XIL .
mm&mlze tr(CX) Z Ci; Xi; w
ij
subject to tI‘(AZX) < bz’, 1=1,...,m feasible
X - 0 set
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Example SDP

Surface correspondence [Maron et al. 2016].
min || RP — QX|[7

X1=1 1"x=1"
X; X =diag(X;), j=1...n
RR"=R"R=1

Can relax final two constraints:

=[] ]
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Hierarchy of convex programs

LP C QP C QCQP C SOCP C SDP
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Algorithms



Finding a feasible point

Start with:

minimize  f(z)
X

subject to g;(z) <0,i=1,...,m.

Replace with a feasibility problem

minimize ¢
b4 i

subject to g;(z) <t, i=1,...,m.
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Finding a feasible point

Start with:

minimize  f(z)
X

subject to g;(z) <0,i=1,...,m.

Replace with a feasibility problem

minimize ¢
b4 i

subject to g;(z) <t, i=1,...,m.

Stop whent=<0
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Active set methods
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Active set

Treat problem as equality constrained.

Maintain an active constraint set A:

e If aninequality constraint is violated add
it as an equality constraint to A.
e Remove constraints that aren’t active.
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Active set

Treat problem as equality constrained.

Maintain an active constraint set A:

e If aninequality constraint is violated add
it as an equality constraint to A.
e Remove constraints that aren’t active.

Recall: the optimum is on the boundary.
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Active set

Start with feasible :CO.
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Active set

Start with feasible :CO .

Find minimizer from xo.
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Active set

Start with feasible ajO .

Find minimizer from V.
Inequality constraint is violated:

e Add equality constraint to active set.
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Active set

Start with feasible ajO .

Find minimizer from V.
Inequality constraint is violated:

e Add equality constraint to active set.

Repeat until optimality.
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Active set

Start with feasible ajo .

Find minimizer from V.
Inequality constraint is violated:

e Add equality constraint to active set.

Repeat until optimality.
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Active set method

Many variants
o primal, dual, primal-dual methods, etc.

Many specializations
o LPs, QPs, ...

Good choice for problems:
o with linear and quadratic constraints
o small or moderate amount of constraints

Disadvantage
o may require many iterations
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Interior point methods
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Interior point method

Replace constrained optimization by unconstrained problem.

A

minimize  f(x)
xr

subject to ¢g;(z) <0,i=1,...,m.

Use the barrier function:

minimize f(z) + Z I_(g;(x))
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Interior point method

Logarithmic barrier (smooth and convex approximation)

A

I (u) = —Llog(~u)

A
___________________ >0
large t
accuracy high
=1
t 0 speed low
t=2 » U

:__
I
o

small t

low

high
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Interior point method

Solve

minixmize f(x) — %Zm:log(—gi(x))
i=1

using unconstrained methods.

Sett « 10t and iterate until & <¢
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Interior point method

e Many variants
o primal-dual methods, reflective, etc.

e Many specializations
o LPs, QPs, SDPs, ...

e Good choice for problems:
o  with many constraints
o non-convex feasible regions

e Disadvantage
o limited warm start capabilities
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Summary

Optimization is everywhere in geometry processing.

We've looked at algorithms for:
e Unconstrained optimization
e Equality constrained optimization
e Inequality constrained optimization

Take home messages:
e Convexity is cruciall
e Use the most specialized algorithm for best performance.
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Further reading

Yurii Nesterov
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Yurii Nesterov
Lectures on Convex Optimization
Springer, 2018

Jorge Nocedal and Stephen J. Wright
Numerical Optimization
Springer, 2006

~ convex
Optimization

Stephen Boyd and Lleven Vandenberghe
Convex Optimization
Cambridge University Press, 2004
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Software

e Solvers:
o Software from COIN-OR foundation
o CPLEX
o  Gurobi
o Mosek
e |[nterfaces
o CVX
o CoMISo
e Programming languages with good support
o Python
o MATLAB

o Julia

51



