Machine Learning
¥ Meets Geometry

1 -0

Emanuele Rodola

SAPIENZA

UNIVERSITA DI ROMA

uslI

US| Lugano  Sapienza University of Rome

Switzerland Italy

fin =gm
| IR
Input M -dim Jutput Q)-dim

SGP Grad School, London, 02 July 2017



$10
17 JULY 2015

sciencemag org

SPECIAL ISSUE Q\:

ARTlFlClAL il
INTELLIGENCE



[l

facebook = _ jﬂ

Facebook opens Al Research in 2014
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Google DEEPMIND

Google acquires DeepMind in 2014
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Tesla autonomous driving car



‘,,-'H_" H Q 1 was wondering what you are going to do later?
e el Me preguntaba o que vas o hacer despuds?

Going 10 the pub, do you want 1o join ws? | think you @
met some of the team at the party in Apsil.

Al puls, squieres unirte g noselros? Creo que conociste
@ olguncs miembnos del equipo en lo fiesta en abril .

@ Can 1 join you guys after my meeting?
ZPuedo unirme o ustedes despues de mi reunion?

Microsoft Skype real-time voice translation 2016
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Breakthrough in image recognition

Error %
30

“Deep learning era” in vision

4.1%
2.9%

2010 2011 2012 2013 2014 2015 2016

ImageNet ILSVRC Challenge

/90



Doubt thou the stars are fire;
Doubt that the sun doth move,;
Doubt truth to be a liar
But never doubt I love...

Text

Audio signals




Doubt thou the stars are fire;
Doubt that the sun doth move,
Doubt truth to be a liar;
But never doubt I love...

Text
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Regulatory networks

Audio signals

Images Functional networks



How to design deep nets on
non-Euclidean domains
and what to do with them?



Prototypical non-Euclidean objects
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Domain structure vs Data on a domain
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Domain structure vs Data on a domain

Domain structure



Domain structure vs Data on a domain
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Domain structure vs Data on a domain




Fixed vs different domain
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Fixed vs different domain

Social network 3D shapes
(fixed graph) (different manifolds)

14/90



Geometric learning # Manifold learning




Different formulations of non-Euclidean CNNs

Spectral domain Spatial domain

Embedding domain



Background



Supervised learning

@ Data vectors f € R?
(e.g. for 512x512 images p ~ 10°)

@ Unknown classification functional
y:RP = {1,...,L} in L classes

@ Training set

S={(fi eR", y; = y(f:))}}/,

@ Parametric model yg of y



Supervised learning

@ Data vectors f € R?
(e.g. for 512x512 images p ~ 10°)

@ Unknown classification functional
y:RP = {1,...,L} in L classes

@ Training set

S={(fi eR", y; = y(f:))}}/,

@ Parametric model yg of y

Supervised learning: find optimal model parameters by minimizing the

loss £ on the training set
T

o = argénin Z Uye(f:),yi)
i—1



Neural network (NN)

e —1
f2 @
w,
f ® qap
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Linear layer

Activation, e.g.

Parameters

® g1

® g2

® 9q

Single linear layer

u =1 q
gl :g <l,zl fl/wl,l'> ll _ ]j;'.'.-”p
&(z) = max{x,0} rectified linear unit (ReLU)

layer weights W' (including bias)



Neural network (NN)
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Deep neural network consisting of L layers
qk—1 1 1 q
; k) (k=1)_ (k) =L...,qk
Linear layer (k) _ ’ w;
y 9" =¢ l;gl L Vo1 e

Activation, e.g.  {(x) = max{z,0} rectified linear unit (ReLU)

Parameters weights of all layers W) ... W) (including biases)



Neural network (NN)

(1) (3)  (L-1)
. 91 91 91 91 ‘
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. g g g g
fir@ ° C I ® o
1 2 3 L+1
. gt(n) 91(12) 9¢<13) gL(ZL—l) out
PO O we O we @ W) @Y%

Deep neural network consisting of L layers

Linear layer g = ¢ (Wkglk—1))

Activation, e.g.  {(x) = max{z,0} rectified linear unit (ReLU)

Parameters weights of all layers W .. W) (including biases)



Neural network (NN)

. gV g g gitm .

'@ [ ) [ ) e O | Xoite

. ggl) 9(2) 9(3) g(Lfl)
e (] ® g5ut

1 2 3 L=1
. gt(n) 91(12) 9¢<13) gL(ZL—l) out
PO O we O we @ W) @Y%
Deep neural network consisting of L layers

Net output gt =& (.. WOE(WWOE)) = yway way (F7)

Activation, e.g.  {(x) = max{z,0} rectified linear unit (ReLU)

Parameters weights of all layers W) ... W) (including biases)



Neural nets as universal approximators

Universal Approximation Theorem Let £ be a non-constant,
bounded, and monotonically-increasing continuous activation function,
y : [0,1]”» — R continuous function, and € > 0. Then, 3n and parame-
ters a € R", W € R"*P (including bias) s.t.

> aib(wif) —y(f)| <e  VEe[0,1]
3=il

Cybenko 1989; Hornik 1991
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Neural nets as universal approximators

Universal Approximation Theorem Let £ be a non-constant,
bounded, and monotonically-increasing continuous activation function,
y : [0,1]”» — R continuous function, and € > 0. Then, 3n and parame-
ters a € R", W € R"*P (including bias) s.t.

Za,{(w;rf) —y(f)| <e vf € [0,1]P
i=1

© Any continuous function can be approximated arbitrarily well by a
neural network with a single hidden layer

® How to find the parameters?
® Does it generalize well / overfit?

© Shallow nets work poorly for high-dimensional data s.a. images

Cybenko 1989; Hornik 1991



Take advantage of the
structure of the data!



Stationarity and Self-similarity

Data is self-similar across the domain



Locality

@ Local features are represented by r X r compact support kernels.

e O(1) parameters per filter.

Karpathy 2016



Translation invariance (image classification tasks)

y(Tof) =y(f) Vv

where

@ image is modeled as a function f € L%([0,1]?)
o T,f(x) = f(x — v) is a translation operator
e v € [0,1]? is a translation vector

e y:L?([0,1]%) — {1,..., L} is classification functional



Introducing local filters

@ Stationarity is implemented by shift-invariant convolutional
operators.

e O(nlogn) computational complexity in general case (FFT).

e O(n) computational complexity for compact kernels.

w®
" @ WO

%

- f @ —Vv(z). fxW®

B @ row®
w®

Vasilache, LeCun, et al 2015



Hierarchy and Compositionality

Data is compositional: images, video, sound are formed of hierarchical
local stationary patterns.

Typical features learned by a CNN becoming increasingly complex
at deeper layers

Zeiler, Fergus 2013 26/90



Hierarchy and Compositionality

Data is compositional: images, video, sound are formed of hierarchical
local stationary patterns.

Simple to abstract
structures

Layer 4 Layer 10

Typical features learned by a CNN becoming increasingly complex
at deeper layers

Zeiler, Fergus 2013

26/90



Convolutional neural network (CNN)

*W11

fi(z)@ ® g1(x)

f2(2) @ ® g2(v)
= *'U.)qp

fr(2)@ W = (wny) gq(x)

Single convolutional layer

p —
Conv. layer qi(r) =¢ <Z(fl’ *wl,l’)(m)> 5'_:11’ ’i)

=1
Activation, e.g.  &(x) = max{z,0} rectified linear unit (ReLU)

Parameters filters W

LeCun et al. 1989



Convolutional neural network (CNN)

. g%”(x) 9t (@) i@ g V@
1(@)e ) e o ® 97" (2)
“(az) 957 (x) w @ g P
()@ ‘e e ® 5" ()
) 94y () 9% (@) 9 @) g4 (@) )
PRS2 SEEC) B SN0 S AT R S W) 99 @
CNN consisting of L convolutional layers
dk—1 l 1 q
k k—1 k = 4.5 (qkK
Conv. layer 91( )(a:) =¢ (Z(gl(’ )*wl(l,))(a:)> r—1 o
= e Qe

Activation, e.g.  £(z) = max{x,0} rectified linear unit (ReLU)

Parameters filters of all layers w® o wd)

LeCun et al. 1989



Convolutional neural network (CNN)

I'@)e o o 2 o 05 (x)
P(@)e o9 o9 oL o 00
S S S
o} o} Q -
2 2 2
in out
PO e @ ® o ® O 09" (@)

CNN consisting of L convolutional layers interleaved with pooling
dk—1 l 1 q
k k-1 k =L...,q
Conv. layer 91( )(2) =¢ (Z(gl(, )*wl(l,))(a:)> V1 G
= N
Activation, e.g.  £(z) = max{x,0} rectified linear unit (ReLU)
Parameters filters of all layers w® oW

Pooling gl(k)(x) = ||gl(k_1)(:1:’) ' e N(z)|l, p=1,2, or o

LeCun et al. 1989



Pooling
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Pooling
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Pooling
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Max pooling
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pooling




Key properties of CNNs

C3: f. maps 16@10x10
Ci1: zlgatzure maps S4: f. maps 16@5x5
X

Full conrlnection | Gaussian connections
Convolutions Subsampling Convolutions St pling Full ion

© Convolutional filters (Translation invariance)

LeCun et al. 1989 29/90
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Key properties of CNNs

C3: f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5
6@28x28

INPUT
32x32

S2:f. maps
6@14x14

|
‘ Full mnAection | Gaussian connections
Convolutions Subsampling Convolutions St ing Full ion

© Convolutional filters (Translation invariance)

© Multiple layers (Compositionality)

© Filters localized in space (Locality)

© Weight sharing (Self-similarity)

© O(1) parameters per filter (independent of input image size n)
© O(n) complexity per layer (filtering done in the spatial domain)
© O(logn) layers in classification tasks

LeCun et al. 1989 29/90



Extrinsic Methods



Multi-view CNNs

_,% % CNN,

P 7 —.I% % CNN,
o, q%%ml

% By o

@ Represent 3D object as a collection of range images from different
views

Su et al. 2015



Multi-view CNNs

_,%% CNN,
_»I% % CNN,
‘ —»% % CNN,

% By o

@ Represent 3D object as a collection of range images from different
views

o CNN;: Extract image features (parameters are shared across views)

Su et al. 2015



Multi-view CNNs

EIR w0
NEER =D
o q%% YR

O

CNN,

@ Represent 3D object as a collection of range images from different
views

o CNNj: Extract image features (parameters are shared across views)

@ Element-wise max pooling across all views

Su et al. 2015



Multi-view CNNs

E1R my =

A N e nia o
Qq ; : /\ZJ ‘ *I% % pooling %%\IN % —» dressers
7}1 toilet—

O

CNN,

@ Represent 3D object as a collection of range images from different
views

o CNNj: Extract image features (parameters are shared across views)
@ Element-wise max pooling across all views

@ CNNy: Produce shape descriptors + final prediction

Su et al. 2015



Applications of Multi-view CNNs

@ 3D shape classification and » \ classify ..
retrieval = chair
o Pre-trained on ImageNet %‘

o Fine-tuned on 2D views \

Su et al. 2015



Applications of Multi-view CNNs

@ 3D shape classification and | classify . .
retrieval v == chair

o Pre-trained on ImageNet /q‘

o Fine-tuned on 2D views \

@ Sketch classification classify
o Mimic views by jittering =" “chair”

Su et al. 2015



Applications of Multi-view CNNs

@ 3D shape classification and

retrieval “chair”
o Pre-trained on ImageNet
o Fine-tuned on 2D views \
@ Sketch classification .
L. . . classify .
o Mimic views by jittering — chair
@ Sketch-based shape retrieval
o Render views with hand-drawn
style (edge maps) retrieve
=

Su et al. 2015



3D ShapeNets

@ Volumetric representation (shape =
binary voxels on 3D grid) object label 10

512 filters of
stride 1

160 filters of
stride 2

4

48 filters of
stride 2

3D voxel input

Convolutional deep belief network

Wu et al. 2015 33/90



3D ShapeNets

@ Volumetric representation (shape =
binary voxels on 3D grid)

@ 3D convolutional network

Wu et al. 2015

4000

512 filters of
stride 1

160 filters of #
stride 2

48 filters of
stride 2

3D voxel input

Convolutional deep belief network

33/90



Learned features: 3D primitives
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Learned features: 3D primitives
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Learned features: 3D primitives

N EXY Pl IXIXI'TL]
L TARR I TLIY T 4L AR
SIITSRSBPREBEYIVE .
fnInrgneshsgsscesct
P LIANIRL L <) T ]
L tittlétltcl'to
l\‘ﬁ?*‘)l THAB 2y
'Ul.‘u.t’.‘t"o'
Y R AN A d {4 W\
TANZLTE "hete g
&‘.:\‘.b*,:"u

AL™
s
L4 )

Wu et al. 2015



Non-rigid clutter

1

Clutter, missing parts, and non-rigid deformations

Cosmo, Rodola, Masci, Torsello, Bronstein 2016 35/90



Descriptor metric learning

Training set consisting of pairs of positives (z,27) and negatives (z,z7)

Cosmo, Rodola, Masci, Torsello, Bronstein 2016 36/90



Descriptor metric learning

Training set consisting of pairs of positives (z,27) and negatives (z,z7)

Each point x has an associated local descriptor g(x)
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Descriptor metric learning

?
.\. = e ‘}"m
-
\\\4« \‘\’

Training set consisting of pairs of positives (z,z") and negatives (z,27)
Each point x has an associated local descriptor g(x)

Goal: learn a metric d(g(z),g(z’)) between the descriptors representing
as reliably as possible the similarity/dissimilarity of positives/negatives

Cosmo, Rodola, Masci, Torsello, Bronstein 2016



Descriptor metric learning

Training set consisting of pairs of positives (z,z") and negatives (z,27)
Each point x has an associated local descriptor g(x)
Goal: learn a metric s.t. d(g(z),g(z)) ~ 0 and d(g(z),g(z~)) >0

Cosmo, Rodola, Masci, Torsello, Bronstein 2016 36/90



Descriptor metric learning

Parametrize the metric by applying a deep net fg to the descriptor

d(g(z), g(2")) = [fe(g(z)) — fo(g(=))l:

Cosmo, Rodola, Masci, Torsello, Bronstein 2016



Descriptor metric learning

Parametrize the metric by applying a deep net fg to the descriptor

d(g(z), g(2")) = [fe(g(z)) — fo(g(=))l:

Learn network parameters ® by minimizing the siamese loss

Ly(©)= Y lfe(r) —folz")Il3

z,xteTt+

+ ) (=) (ms —|lfe(z) —fole)]2)%

z,x” €T~

Cosmo, Rodola, Masci, Torsello, Bronstein 2016; Bromley et al. 1994; Hadsell et al.
2006



Descriptor metric learning

Parametrize the metric by applying a deep net fg to the descriptor

d(g(z), g(2")) = [fe(g(z)) — fo(g(=))l:

Learn network parameters ® by minimizing the siamese loss

Ly(©)= Y lfe(r) —folz")Il3

z,xteTt+

+ ) (=) (ms —|lfe(z) —fole)]2)%

z,x” €T~

Regularize with global distribution penalty

Lg(©) =04 +0g + (mg+ 115 — He)+

Cosmo, Rodola, Masci, Torsello, Bronstein 2016; Bromley et al. 1994; Hadsell et al.
2006; Kumar et al. 2015



Cluttered matching examples

Correspondence examples (corresponding points are marked with same color)

Cosmo, Rodola, Masci, Torsello, Bronstein 2016 38/90
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Cluttered matching examples

Correspondence examples (corresponding points are marked with same color)

Cosmo, Rodola, Masci, Torsello, Bronstein 2016 38/90



Going non-Euclidean



Challenges of geometric deep learning

@ Non-Euclidean data often have local, self-similar, and hierarchical
structure

@ How to define convolution?
@ How to do pooling?

@ How to work fast?



Prototypical non-Euclidean objects

Manifolds Graphs

41/90



Discrete manifolds

Triangular mesh

Nearest neighbor graph
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Discrete manifolds

1
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7/
X
OEH

2

X
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o

Triangular mesh

Nearest neighbor graph

..,n}

Y ={1,.
ECVY XV

Vertices

V=A{1,...,n}
ECY XV

Vertices

Edges

Edges

i)e&}

k

i (
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Manifold mesh = each edge is shared

i, k
by 2 faces + each vertex has 1 loop
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F =
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Laplacian eigenfunctions: Euclidean

- 0 +m

First eigenfunctions of 1D Euclidean Laplacian = standard Fourier basis



Laplacian eigenfunctions: manifold

o1 @2 o3

First eigenfunctions of a manifold Laplacian

44/90



Laplacian eigenfunctions: graph

First eigenfunctions of a graph Laplacian



Fourier analysis: Euclidean space

A function f : [-m, 7] — R can be written as Fourier series

f(l') _ Z % _71’ f(x/)e—ikm'dx/ 6ikx

k>0

—D— =0 JrOQvg +a3%ﬂv+...
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Fourier analysis: Euclidean space

A function f : [—m, 7] — R can be written as Fourier series

f(x) _ Z % _71’ f(x/)e—ikm'dx/ eikx

k>0

Fe=(F6%%) 12 p )

—D— =0 JrcmvQ +a3%ﬂv+...

. . . . . 2 ) y
Fourier basis = Laplacian eigenfunctions: —-L; etk = j2¢ike



Fourier analysis: non-Euclidean space

A function f : X — R can be written as Fourier series

1@ =3 [ o)’ oula)

k>1

Fe=(F6) 12

2

Fourier basis = Laplacian eigenfunctions: A¢y(x) = A\pdr(x)

47/90



Convolution: Euclidean space

Given two functions f, g : [—m, 7] — R their convolution is a function
s

(fxg)(x)= [ [fa")g(x—a")da’

—T

d’'Alembert 1754
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@ Shift-invariance: f(x — zo) * g(z) = (f * g)(x — o)

d’'Alembert 1754
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Convolution: Euclidean space

Given two functions f, g : [—m, 7] — R their convolution is a function

T

(fxg)(x)= [ [fa")g(x—a")da’

—T

@ Shift-invariance: f(x — zo) * g(z) = (f * g)(x — o)
@ Convolution operator commutes with Laplacian: (Af)xg = A(f % g)

@ Convolution theorem: Fourier transform diagonalizes the convolution
operator = convolution can be computed in the Fourier domain as

o — N

(fxg)=1f-g

@ Efficient computation using FFT

d’Alembert 1754; Borel 1899
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Convolution Theorem: discrete case

Convolution of two vectors f = (f1,..., f.)" and g = (g1, ...
g 92 - o Gn
gn 91 92 oo Gn-1 fi

frg = O :
93 94 -~ g1 92 I
g2 93 - . @
fi i
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Spectral convolution
Generalized convolution of f,g € L?(X) can be defined by analogy

f*xg = Z<fa¢k>L2(X)<ga¢k>L2(X)¢k

E>1

In matrix-vector notation

f*g: @dlag(gbagn)@—rf
G

e Not shift-invariant! (G has no circulant structure)
o Commutes with Laplacian: GAf = AGf

o Filter coefficients depend on basis ¢1, ..., ¢,



Spectral domain
deep learning methods
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Spectral graph CNN
Convolutional layer expressed in the spectral domain

p
I=1,...,
8 =¢ (Z ‘bwlvl’@Tfl’) = 1,...,qp

'=1

where W;; = n x n diagonal matrix of filter coefficients

© Filters are basis-dependent = does not generalize across graphs!
© O(n) parameters per layer

® O(n?) computation of forward and inverse Fourier transforms
&7 & (no FFT on graphs)
© No guarantee of spatial localization of filters

Bruna et al. 2014



Basis dependence

Function f

53/90



Basis dependence

‘Edge detecting’ spectral filter BW® ' f



Basis dependence

Same spectral filter, different basis W ' f
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Basis dependence

High-frequency Laplacian eigenvector ¢sg
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Filtering in different bases

Spectral filter
T T

200 400 600 800 1,000

B17(A1)®] o By7(A2) P4 8o

Apply spectral filter 7(\) in different bases ®; and ®2
= different results!
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Filtering in different bases

H17(A1)P] 8o Canonical shape Bo7(A2) P 8o
1 2
with basis ¥

Apply spectral filter 7(\) in different bases ®; and ®2
= different results!
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Filtering in synchronized bases

@1017(A)CIT<I’1T¢50 Canonical shape @2C2T(A)C;@;50
with basis ¥

Apply spectral filter 7(\) in synchronized bases ®,C; and ®,C,
= similar results!

Yi et al. 2017



Localization and Smoothness

In the Euclidean setting (by Parseval’s identity)

“+o00 “+o00 kAw2
/_|x|2k|f< o= [ 9 /w)

G dw

Bruna et al. 2014; Henaff, Bruna, LeCun 2015
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Localization and Smoothness
In the Euclidean setting (by Parseval’s identity)
N 2
+oo +oo akf(w)
| @ = |

dw
Owk
= Localization in space = smoothness in frequency domain

Parametrize the filter using a smooth spectral transfer function 7(\)

Application of the parametric filter with learnable parameters «

Ta()\l)
Ta(A)f = & o'f
Ta(An)

Bruna et al. 2014; Henaff, Bruna, LeCun 2015



Spectral graph CNN with smooth spectral filters

Represent spectral transfer function as a linear combination of smooth
kernel functions 81(A), ..., Br(N)

o)) = 300363

where o = (o, ..., ;)" is the vector of filter parameters

(Litman, Bronstein, 2014); Henaff, Bruna, LeCun 2015
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Spectral graph CNN with smooth spectral filters

Represent spectral transfer function as a linear combination of smooth
kernel functions 81 (), ..., B-(A)

W = Diag(Ba)

where a = (o, ..., ,) " is the vector of filter parameters

© O(1) parameters per layer
© Fast-decaying filters in space

® O(n?) computation of forward and inverse Fourier transforms
&7 & (no FFT on graphs)

(Litman, Bronstein, 2014); Henaff, Bruna, LeCun 2015



Spatial domain
deep learning methods



Extrinsic vs Intrinsic

L s

Extrinsic Intrinsic
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Extrinsic vs Intrinsic

Extrinsic Intrinsic
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What is convolution on manifolds?



Convolution

Euclidean

Spatial domain
(f*g)(x / f(&glx —

Spectral domain

—

(f*9)w) = f(w)-§w)

‘Convolution Theorem’

Non-Euclidean

@)k = ([, ox)L2(x) (9, Br) L2(x)



Spatial convolution

Euclidean Non-Euclidean

Boscaini, Masci, Bronstein, Vandergheynst 2015



Convolution in the spatial domain
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Convolution in the spatial domain

ABICDEABCDE
FGHIJFGHTIJ
KILMNOK LMNO
PR STUPRSTU
VWXY ZVWXY Z
ABICDEABCDE
FGHIJFGHIJ
KILMNOK LMNO
PR STUPRSTU
VWXY ZVWXY Z
Euclidean Non-Euclidean

@ No canonical global system of coordinates
o No grid structure (no regular memory access)

@ No shift-invariance (patch is position-dependent)



Patch operator

(f % g)(x /@ @du

Masci et al. 2015; Boscaini, Masci, Rodola, Bronstein 2016



Convolution

Euclidean

Spatial domain
(o)) = [ G

Spectral domain

—

(f*9)(w) = f(w)-§w)

‘Convolution Theorem’

Non-Euclidean

oot

0)dpdo

(m)k = (f, or)r2x)(9, Pr) L2 ()



Geodesic CNNs



Patch operator

(f, wpo(@)) 122, @

(D(z)f)(p,0)

Boscaini, Masci, Bronstein, Vandergheynst 2015 67/90



Patch operator

(f*9)(a //@ @dpd@

Np,0) g(p,0)

Boscaini, Masci, Bronstein, Vandergheynst 2015 67/90



Toy Geodesic CNN (GCNN) architecture

filter bank 1
P filters

{@@ @—@}—
T .

filter bank 2

filter bank Q

o8- -doll |

L
Input layer  Linear RelLU Geodesic convolutional AMP Output layer
M-dim layer  layer layer layer Q-dim

Ng rotations

[ max ]
:B:
-1

[ max |
!

|max|

Masci, Boscaini, Bronstein, Vandergheynst 2015



Learning local descriptors with GCNN

@ As similar as possible on positives T+

@ As dissimilar as possible on negatives 7~

Masci, Boscaini, Bronstein, Vandergheynst 2015 69/90



Learning local descriptors with GCNN

@ As similar as possible on positives T+
@ As dissimilar as possible on negatives 7~

@ Minimize siamese loss w.r.t. GCNN parameters @

() = (1-7 > llfe(z)feo(z")]

(z,xt)eT+
+ v Y, (e lfe(x) —felz)l)+
(z,z—)ET—
Masci, Boscaini, Bronstein, Vandergheynst 2015 69/90



Descriptor robustness

hyRetntt

HKS descriptor distance

Descriptors: Sun, Ovsjanikov, Guibas 2009 (HKS); Aubry, Schlickewei, Cremers 2011
(WKS); Masci, Boscaini, Bronstein, Vandergheynst 2015 (GCNN); data: Bronstein et
al. 2008 (TOSCA); Anguelov et al. 2005 (SCAPE); Bogo et al. 2014 (FAUST)



Descriptor robustness

é} ,

Descriptors: Sun, Ovsjanikov, Guibas 2009 (HKS); Aubry, Schlickewei, Cremers 2011
(WKS); Masci, Boscaini, Bronstein, Vandergheynst 2015 (GCNN); data: Bronstein et
al. 2008 (TOSCA); Anguelov et al. 2005 (SCAPE); Bogo et al. 2014 (FAUST)

WKS descriptor distance



Descriptor robustness

GCNN descriptor distance
Descriptors: Sun, Ovsjanikov, Guibas 2009 (HKS); Aubry, Schlickewei, Cremers 2011

(WKS); Masci, Boscaini, Bronstein, Vandergheynst 2015 (GCNN); data: Bronstein et
al. 2008 (TOSCA); Anguelov et al. 2005 (SCAPE); Bogo et al. 2014 (FAUST)



Learning shape correspondence with GCNN

Query X Reference Y

@ Correspondence = labeling problem

Rodola et al. 2014; Masci, Boscaini, Bronstein, Vandergheynst 2015 71790



Learning shape correspondence with GCNN

Query X Reference )

@ Correspondence = labeling problem

@ GCNN output fg(z) = probability distribution on reference )

Rodola et al. 2014; Masci, Boscaini, Bronstein, Vandergheynst 2015 71/90



Learning shape correspondence with GCNN

Query X Reference )

@ Correspondence = labeling problem

@ GCNN output fg(z) = probability distribution on reference )

@ Minimize logistic regression cost w.r.t. GCNN parameters ©
f(@) = — Z <5y* (z)> log f@(.CL')>L2(y)

(z,y*(2))ET
Rodola et al. 2014; Masci, Boscaini, Bronstein, Vandergheynst 2015 71/90



Correspondence example

URE]

Correspondence found using GCNN
(similar colors encode corresponding points)

Masci, Boscaini, Bronstein, Vandergheynst 2015




Anisotropic CNNs



Anisotropic heat kernels

haot(x,2) =Y €™ bopr.(2) Pasr (2')

k>0

Scale ¢ Orientation 0 Elongation «

Boscaini, Masci, Rodola, Bronstein, Cremers 2016
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Anisotropic CNN (ACNN)

” Given a function f € L?(X), the patch operator

(D(x)f)(eat) = <f7 ha@t(x7 ')>L2(X)

produces a local representation of f around point z

@ O = 'angular coordinate’

@ t = 'radial coordinate’

Boscaini, Masci, Rodola, Bronstein 2016



Anisotropic CNN (ACNN)

Given a function f € L?(X), the patch operator
(D(z)£)(0,t) = (f, haot(z, ) L2(x)
produces a local representation of f around point z
@ O = 'angular coordinate’

@ t = 'radial coordinate’

Anisotropic convolution

(fxa)(x) =Y _(D(@)f)(8,t)a(8,1)

0.t

Boscaini, Masci, Rodola, Bronstein 2016



Learned correspondence visualization

Texture transferred from reference to query shapes
using correspondence learned by ACNN

Boscaini, Masci, Rodola, B 2016



Learned correspondence on point clouds

Colors transferred from reference to query shapes using correspondence learned with
ACNN (similar colors encode corresponding points)

Boscaini, Masci, Rodola, B, Cremers 2015 77/90



Partial correspondence with ACNN

NN @)

Correspondence

0.1

e

Correspondence error

0.0

Boscaini, Masci, Rodola, Bronstein 2016 78/90



Partial correspondence with ACNN

bl PRI

Correspondence
5
, 01
> Ho.o

Correspondence error

Boscaini, Masci, Rodola, Bronstein 2016



Embedding domain
deep learning methods



Global parametrization

Key idea: map the input surface to some parametric domain (e.g. 2D
plane) where operations can be defined more easily.

Sinha et al. 2016; Maron et al. 2017
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Global parametrization

Key idea: map the input surface to some parametric domain (e.g. 2D
plane) where operations can be defined more easily.

W ;i /ﬁ\

@ Enables adoption of Euclidean techniques in the embedding space

@ Provides invariance to certain operations
@ Parametrization may be non-unique

@ The map can introduce distortions

Sinha et al. 2016; Maron et al. 2017



Convolution on surfaces

Is translation-invariant convolution on surfaces possible?



Convolution on surfaces

Is translation-invariant convolution on surfaces possible?

Yes! The torus is the only closed orientable surface admitting a
translational group.
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Convolution on surfaces

Is translation-invariant convolution on surfaces possible?

Yes! The torus is the only closed orientable surface admitting a
translational group.

CNNs can be well-defined over the flat-torus!

82/90



Torus 4-cover

Surface S with sphere topology

Maron et al. 2017 83/90



Torus 4-cover

Surface S with sphere topology Flat-torus T with 4 replicas of S
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Torus 4-cover

Surface S with sphere topology Flat-torus T with 4 replicas of S

Standard Euclidean 2D CNN architectures can now be used on 7.

Maron et al. 2017 83/90



Torus 4-cover

For each triplet {p1,p2,p3} € S, use orbifold-Tutte to map S* to 7.

Tha mapping from S* to T is a conformal homeomorphism.

Maron et al. 2017



Conformal zoom

Conformality introduces scale changes.

e “Magnifying glass” effect

Maron et al. 2017



Conformal zoom

Conformality introduces scale changes.
e "Magnifying glass” effect

@ Prediction aggregation from different triplets at test time

Maron et al. 2017




Segmentation results

Maron et al. 2017



Segmentation results

Maron et al. 2017



Conclusions

@ Application / extension of deep learning to geometric and
non-Euclidean structured data

@ Deep learning allows designing task-specific features and learning
from data invariance that is impossible to model axiomatically

@ In graphics, an almost virgin field that is very rapidly developing
@ Many synergies with other fields
@ State-of-the-art results in many ‘old" applications

@ New applications



Challenges

@ Theoretical questions

@ Generalization across domains

Time-varying data / domains

Directed graphs

Other shape representations

Synthesis

Computation
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Geometric and Visual Computing
at Sapienza University of Rome

Topics: shape analysis, 3D vision, reconstruction, geometry processing,
machine learning, interdisciplinary applications



Thank you!



	fd@rm@0: 
	fd@rm@1: 
	fd@rm@2: 
	fd@rm@3: 


