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About This Course 

• Introduction and general challenges 

• Computational tools and design tools for 

– Deformable Shapes 

– Foldable Shapes 

• Latest research 

• Advanced manufacturing 

• Inspiration 

 

 

 

Source: The Economist (Cover) 



About This Course 

Source: The Economist (Cover) 



Other 3D Printing Courses at Siggraph/ Siggaph Asia 

• Siggraph Asia 2014 
– 3D printing oriented design: geometry and optimization 

http://staff.ustc.edu.cn/~lgliu/Courses/SigAsia_2014_course_3Dprinting/index.html  

• Siggraph 2015 
– Modeling and Toolpath Generation for Consumer-Level 3D Printing 

– http://webloria.loria.fr/~slefebvr/sig15fdm/ 

• Siggraph 2016 
– Computational Tools for 3D Printing 

– http://computational-fabrication.com/2016/ 

• Eurographics 2017 
– Topology Optimization for Computational Fabrication 

– https://topopt.weblog.tudelft.nl/ 
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Course Schedule 

16:00 - 16:15, Welcome & Introduction Bernd 

16:15 - 16:45, Inverse Design – Deformable Shapes Bernd  

16:45 - 17:15, Inverse Design – Foldable Shapes Niloy  

17:15 - 17:25, Advanced Manufacturing and Open Challenges, Bernd 

17:25 – 17:30 Q&A 



Introduction 



Computational Fabrication 

 

Engineering / 
Customized Products 

Bioprinting / 
Medicine 

Robotics / 
Nanofabrication 



 

[The Economist] 



«Game Changer» 3D Printer 

 

 

3D Printers 

[Stratasys] 



Complexity (almost) for Free 

Arabic Icosahedron 
(Carlo H. Séquin) 



Benefits of Additive Manufacturing 

• Very flexible 

• Rapid fabrication 

• Excellent for customization 

• Complexity for free 

• AM has minimal material waste 



Limitations 

• Limited part sizes 

• Limited fabrication speed 

• Limited materials 

• Poor surface finish 

• Inconsistent part quality 

• High cost (machine, material, pre- and postprocessing) 



Computational Fabrication 

Physical World 
Information 

Ideas 

Virtual World Output 

? ? 



State of the Art 

  
 
 
 
 
 

Triangle Surface 
Mesh 

 
 
 
 
 
 

Simulation 

 
 
 
 
 
 

Shape 
modeling 



State of the Art 

  
 
 
 
 
 

Triangle Surface 
Mesh 

 
 
 
 
 
 

Simulation 

 
 
 
 
 
 

Shape 
modeling 

Trillions  
of voxels 

Finite Element 
method too slow 

Prescriptive, 
no semantics 



Direct Specification 

• Decompose into regions 

• Assign one material for 

 each region 



Functional Specification 

Appearance Properties 

Texture 



From Functional 2 Direct Specification 

Target Object 
Output 

Base Materials 

Fabrication 

 
 
 
 

Mapping / 
Optimization 



Questions? 
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Inverse Design of Deformable Shapes 
Bernd Bickel 
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Deformable Objects 

[Festo] 

[RBO Hand, TU Berlin] 
[shapeways.com] 
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From Functional 2 Direct Specification 

Virtual Object 

Output 

Base Materials 

Fabrication 

 
 
 
 

Search & 
Simulation 
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Manufacturing Deformable Materials 

intrinsic extrinsic 

[Schumacher et al. 2015] 

[Bickel et al. 2012] 
[Skouras et al. 2013] 
[Bickel et al. 2010] 

[Panetta et al. 2015] 
[Martínez et al. 2016] [Konakovic et al. 2016] 
 

[Chen et al. 2014] 

[Hiller and Lipson 2009] 

[Chen et al. 2013] 
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4D Printing 

intrinsic extrinsic 

P
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e

h
av
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The 4th dimension is the set of behavioral rules that are pre-programmed into a  
3D-printed shape. Based on any number of stimuli, the object can be set to respond  
differently. These responses can take a near limitless number of forms including  
(but definitely not limited to) changes in color, temperature, shape, movement, ... 
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From Functional 2 Direct Specification 

 

Target Object 

Output 

Base Materials 

Fabrication 

 
 
 
 

Search & 
Simulation 



FOR TWDC INTERNAL USE ONLY, DO NOT DISTRIBUTE  

From Functional 2 Direct Specification 

 

Target Object 

Output 

Base Materials 

Fabrication 

 
 
 
 

Search & 
Simulation 
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Manufacturing Deformable Materials 

intrinsic extrinsic 

[Schumacher et al. 2015] 

[Bickel et al. 2012] 
[Skouras et al. 2013] 
[Bickel et al. 2010] 

[Panetta et al. 2015] 
[Martínez et al. 2016] 

[Chen et al. 2014] 

[Hiller and Lipson 2009] 

[Chen et al. 2013] 
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Goal 

 



FOR TWDC INTERNAL USE ONLY, DO NOT DISTRIBUTE  

Approach 1: Topology Optimization 

[Sigmund 2009] 
[Schumacher et al. 2015] 
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Classes of structural optimization methods 

 

[courtesy Aage 2017] 

Initial 

Optimized 

Size Shape Topology 
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Generating Optimal Topologies 
[Bendsøe and Kikuchi 1988] 

Design domain 
Optimal material redistribution 

Interpretation 
[EADS] [courtesy Aage 2017] 
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Discrete Topopt Formulation 

[Sigmund 2015] 

0/1 Integer problem 
 
Huge number of combinations! [courtesy Aage 2017] 
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SIMP-approach  
(Simplified Isotropic Material with Penalization) 

[Bendsøe 1989, Zhou and Rozvany 1991, Mlejnek 1992] 

Stiffness interpolation: 

[courtesy Aage 2017] 
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Sensitivity Analysis by Adjoint Method 

• A general function and a general residual 
Φ = Φ(𝝆, 𝒖 𝝆 ), 𝑹 𝝆, 𝒖 𝝆 = 0 
 

• Step 1: differentiate using the chainrule 
𝑑Φ

𝑑𝜌𝑒
=

𝜕Φ

𝜕𝜌𝑒
+

𝜕Φ

𝜕𝒖

𝑑𝒖

𝑑𝜌𝑒
       

𝑑𝑹

𝑑𝜌𝑒
=

𝜕𝑹

𝜕𝜌𝑒
+

𝜕𝑹

𝜕𝒖

𝑑𝒖

𝑑𝜌𝑒
= 0 

 
• Use the residual eqs: 

𝑑𝒖

𝑑𝜌𝑒
= −

𝜕𝑹

𝜕𝒖

−1
𝜕𝑹

𝜕𝜌𝑒
 

[Slide from Aage 2017] 
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Sensitivity Analysis by Adjoint Method 

• Step 2: Insert trouble term into derivative 
𝑑Φ

𝑑𝜌𝑒
=

𝜕Φ

𝜕𝜌𝑒
+
𝜕Φ

𝜕𝒖
−
𝜕𝑹

𝜕𝒖

−1
𝜕𝑹

𝜕𝜌𝑒
 

 
• Step 3: Adjoint problem 

𝜆𝑇 = −
𝜕Φ

𝜕𝒖

𝜕𝑹

𝜕𝒖

−1

 
𝜕𝑹𝑇

𝜕𝒖
𝝀 = −

𝜕Φ

𝜕𝒖
 

• Final sensitivity 
𝑑Φ

𝑑𝜌𝑒
=
𝜕Φ

𝜕𝜌𝑒
+ 𝝀𝑇

𝜕𝑹

𝜕𝜌𝑒
 

𝝀𝑇 

[Slide from Aage 2017] 
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Mesh-dependence 

 

Laboratory Overview 
[Slide from Aage 2017] 
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Regularization 

[Slide from Aage 2017] 
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TopOpt Scheme 

[Sigmund 2015] 

Initialize FEM 

Finite Element Analysis 
(Elastic, Thermal, Electrical, …) 

Sensitivity Analysis 

Regularization (filtering) 

Optimization 

𝜌𝑒 converged? 

STOP 

𝑲𝑼 = 𝑭   or   𝑹 𝑼 = 𝟎 

[courtesy Aage 2017] 
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“TopOpt App” from DTU 

http://www.topopt.dtu.dk 
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free vertex 
constrained vertex 

𝑥𝑜
𝑏𝑎𝑠𝑒 𝑥1

𝑏𝑎𝑠𝑒 

𝑥𝑖 𝑥𝑗 

𝑥𝑗 = 𝑥1
𝑏𝑎𝑠𝑒 + 𝑥𝑖 − 𝑥0

𝑏𝑎𝑠𝑒 [Smit et al. 1998] 

[Kharevych et al. 2009] 

Approach 1: Topology Optimization 
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𝑶 𝜶 = 𝑪𝒈𝒐𝒂𝒍 − 𝑪 𝝆𝒊 𝑭

𝟐
+ 𝑹 

Approach 1: Topology Optimization 

𝜌𝑖𝑖
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𝑶 𝜶 = 𝑪𝒈𝒐𝒂𝒍 − 𝑪 𝝆𝒊 𝑭

𝟐
+ 𝑹 

Approach 1: Topology Optimization 
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TopOpt – Family of Methods 

• Density-based (what we have seen before) 

• Implicit methods 

• Topological derivatives 

• Discrete approaches (Evolutionary methods) 

• Combined shape and topology approaches 
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Approach 2: Systematic Topology Enumeration 

? 

[Panetta et al. 2015] 
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Approach 2: Systematic Topology Enumeration 

[Panetta et al. 2015] 



FOR TWDC INTERNAL USE ONLY, DO NOT DISTRIBUTE  

Topology Sweep 

 

[Panetta et al. 2015] 
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Microstructure Shape Optimization 

• Thickness and offset parameters continuously control 
microstructure’s shape, 𝜔  

• Fit the microstructure to an elasticity tensor: 

 

 

 

[Panetta et al. 2015] 
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Shape Optimization Results 

[Panetta et al. 2015] 
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Shape Optimization Results 

[Panetta et al. 2015] 
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Manufacturing Deformable Materials 

intrinsic extrinsic 

[Schumacher et al. 2015] 

[Bickel et al. 2012] 
[Skouras et al. 2013] 
[Bickel et al. 2010] 

[Panetta et al. 2015] 
[Martínez et al. 2016] 

[Chen et al. 2014] 

[Hiller and Lipson 2009] 

[Chen et al. 2013] 
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From Functional 2 Direct Specification 

• Deformation Specification 

• Spatially-varying 
material structure 

• Shape with assigned 
Material Parameters 

 
 
 
 

Input Output 
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mapping 

From Functional 2 Direct Specification 

• Deformation Specification 

• Spatially-varying 
material structure 

Input Output 

• Shape with assigned 
Material Parameters 
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Challenge: Find optimal combinations 

 

[Schumacher et al. 2015] 
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Synthesis 
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Challenge: Find optimal combinations 

 

[Schumacher et al. 2015] 
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Periodic Tiling: Challenges 

• Gradation? Possible, but transitions? 

 

 

 

 
 
 

 
 

 

 

 
[Schumacher et al. 2015] – solves an optimization  
problem for finding compatible tilings 

• Mapping? Possible, but difficult. 
 

 

 

 

 

 
 
 

 
 

 

 

 

? 

Hexahedral-dominant meshing 
[Sokolov et al. 2015] 
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Procedural Synthesis for Fabrication 

Slice 

F(x,y,z) 

Fill with microstructure 

[Martínez et al. 2016] 
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Procedural Synthesis for Fabrication 

Printed with Autodesk Ember [Martínez et al. 2016] 
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Procedural Synthesis for Fabrication:  
Result Cute Octopus 

Printed with B9 Creator [Martínez et al. 2016] 
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optimization 

From Functional 2 Direct Specification 

• Deformation Specification 

• Spatially-varying 
material structure 

Input Output 

• Shape with assigned 
Material Parameters 
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Problem Formulation 

𝐸 𝐱, 𝐩 = 𝐸𝑚𝑎𝑡𝑐ℎ 𝐱, 𝐱𝑡𝑎𝑟𝑔𝑒𝑡  

Design 
Parameters 

𝐟𝑡𝑜𝑡𝑎𝑙 𝐱, 𝐩 = 0 subject to 
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Problem Formulation 

𝐸 𝐱, 𝐩 = 𝐸𝑚𝑎𝑡𝑐ℎ 𝐱, 𝐱𝑡𝑎𝑟𝑔𝑒𝑡  

Design 
Parameters 

𝐟𝑡𝑜𝑡𝑎𝑙 𝐱, 𝐩 = 0 subject to 

Optimization Strategies: 
• Discrete ([Bickel et al. 2010])  
• Continuous ([Skouras et al. 2013]) 
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Result 

 

[Bickel et al. 2010] 
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Ready to Wear 

[Bickel et al. 2010] 
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Material Distribution Optimization 
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Material Distribution Optimization 
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Results 

Target Pose 

Rest Pose 

Stiff Soft 
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CurveUps: Shaping Objects from Flat Plates with Tension-Actuated Curvature 
R. Guseinov, E. Miguel, B. Bickel 
ACM Transactions on Graphics (Proc. SIGGRAPH 2017) 

CurveUps 
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Conclusion 

• Summary 
– Control at various levels 

– Techniques could be combined 

– Interactive vs. Specification-Based Design 

• Limitations / Future Work 
– Scaling  

– Non-linear material behavior can be very complex 

– Fabrication constraints often quite specifc  

– 3D printer  
• Durability of materials 

• Handling of materials 
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Thank you! 
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Simplifying Making of Foldable Shapes

Origami



Simplifying Making of Foldable Shapes

Origami

TreeMaker



Simplifying Making of Foldable Shapes

Curved Folding Motivation
Piecewise Developable Surfaces in Architecture

There is great interest in developable surfaces in architecture. The
Disney Concert Hall designed by Frank Gehry is a popular example.

Disney Concert Hall, F. Gehry

[w/	Kilian,	Sheffer,	Po5mann,	et	al.]



Simplifying Making of Foldable Shapes

Piecewise Developable Surface Motivation
Piecewise Developable Surfaces in Architecture

Assembling developable surfaces at a common crease leads to the
tiling problem if the crease is not developable.









Simplifying Making of Foldable Shapes

Inspiration

Motivation
Curved Folding – Curved Crease Origami – Curvigami

Adding curved creases to the set of allowable folds complex and
elegant shapes can be designed with a small number of folds.

Models created by David Hu↵man and Gregory Epps. All models
are folded from a single sheet of paper.

[0] D. Hu↵man 76: Curvature and Crease: A Primer on Paper

created by: David Huffman, Gregory Epps



Simplifying Making of Foldable Shapes

How to Create One?

Curved Folding
Problem Formulation

Problem
Approximate an almost developable surface (e.g. obtained by 3D
scanning of folded models made of paper-like materials) by a
discrete developable surface



Simplifying Making of Foldable Shapes

Developable Surface



Simplifying Making of Foldable Shapes

Developable Surface
• vanishing	Gaussian	curvature
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• vanishing	Gaussian	curvature

• non-flat								1-parameter	family	of	tangent	planes)



Simplifying Making of Foldable Shapes

Developable Surface
• vanishing	Gaussian	curvature

• non-flat								1-parameter	family	of	tangent	planes
– cones,	cylinders,	tangent	surfaces

)



Simplifying Making of Foldable Shapes

Developable Surface
• vanishing	Gaussian	curvature

• non-flat								1-parameter	family	of	tangent	planes
– cones,	cylinders,	tangent	surfaces

• 						ruled	surface

)

)



Simplifying Making of Foldable Shapes

Developable Surface
• vanishing	Gaussian	curvature

• non-flat								1-parameter	family	of	tangent	planes
– cones,	cylinders,	tangent	surfaces

• 						ruled	surface
– same	tangent	plane	along	same	generator	(ruling)

)

)



Simplifying Making of Foldable Shapes

Developable Patches

Discrete Developable Surfaces
Surface Representation I

Smooth vs. Discrete

Each patch just de-
scribed has a natural
representation as a dis-
crete surface.

• PQ strips

• triangle fans

• planar polygons
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Developable Patches

Discrete Developable Surfaces
Surface Representation I

Smooth vs. Discrete

Each patch just de-
scribed has a natural
representation as a dis-
crete surface.

• PQ strips

• triangle fans

• planar polygons



Simplifying Making of Foldable Shapes

Step 1: Estimate Rulings

Curved Folding
Ruling estimation I

Rulings are characterized as lines with constant surfaces normals.
For any two points on a ruling the geodesic distance and the
spatial distance are equal.

Compute creases with
[1]. Estimate ruling di-
rections in vertices away
from creases. Inte-
grate these directions
and find a sparse set of
good rulings.

[1] Ohtake et al: Ridge-valley lines on meshes via implicit surface fitting
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Step 1: Estimate Rulings

Curved Folding
Ruling estimation I

Rulings are characterized as lines with constant surfaces normals.
For any two points on a ruling the geodesic distance and the
spatial distance are equal.

Compute creases with
[1]. Estimate ruling di-
rections in vertices away
from creases. Inte-
grate these directions
and find a sparse set of
good rulings.

[1] Ohtake et al: Ridge-valley lines on meshes via implicit surface fitting



Simplifying Making of Foldable Shapes

Step 2: Unfold to a PlaneCurved Folding
Unfolding

Use constrained shape deformation tool of [2] to unfold the model.
The z-coordinate of vertices are constrained to be zero.

[2] Kilian et al. 07: Geometric Modeling in Shape Space

[3] Liu et al. 08: A Local/Global Approach to Mesh Parametrization



Simplifying Making of Foldable Shapes

Step 3: Quad Mesh Initialization Curved Folding
Quad Mesh Initialization

• Extend rulings to boundary/crease.

• Coalesce close ruling endpoints.

• Remove T-junctions at creases by inserting a ruling on the
other side.
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Step 4: 2D-3D Optimization

Curved Folding
Result of Initialization

Optimization
Optimize both the shape of planar faces and the spatial position
and orientation of corresponding congruent faces to make the
polygon soup a mesh. We use a PriMo-like approach to solve this
problem.

[4] Botsch et al. PriMo: Coupled Prisms for Intuitive Surface Modeling
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Representation
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Representation
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Representation
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Discretizing Curvature



Simplifying Making of Foldable Shapes

Discretizing Curvature
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Discretizing ‘Folds’
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Discretizing ‘Folds’
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Step 4: 2D-3D Optimization

Curved Folding
Result of Initialization

Optimization
Optimize both the shape of planar faces and the spatial position
and orientation of corresponding congruent faces to make the
polygon soup a mesh. We use a PriMo-like approach to solve this
problem.

[4] Botsch et al. PriMo: Coupled Prisms for Intuitive Surface Modeling
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Step 4: 2D-3D Optimization

Curved Folding
Result of Initialization

Optimization
Optimize both the shape of planar faces and the spatial position
and orientation of corresponding congruent faces to make the
polygon soup a mesh. We use a PriMo-like approach to solve this
problem.

[4] Botsch et al. PriMo: Coupled Prisms for Intuitive Surface Modeling

Curved Folding
The Objective Function

The objective function in more detail
The objective function consists of vertex agreement, fairness, and
fitting terms.

F

vert

:=
X

p2P

(mi

p

�m

j

p

)2

F

fit

:=
X

m2M

((m�m

c

) · n
c

)2

F

fair

:=
X

e

ij

2E

w

ij

(ni � n

j)2

Vertices m belong to the polygon soup. Those vertices are related
to vertices p of the planar mesh by a rigid body motion.
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Step 4: 2D-3D Optimization

Curved Folding
Result of Initialization

Optimization
Optimize both the shape of planar faces and the spatial position
and orientation of corresponding congruent faces to make the
polygon soup a mesh. We use a PriMo-like approach to solve this
problem.

[4] Botsch et al. PriMo: Coupled Prisms for Intuitive Surface Modeling

Curved Folding
The Objective Function

The objective function in more detail
The objective function consists of vertex agreement, fairness, and
fitting terms.
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Properties
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composed into patches lying on

• planar regions

• cones

• cylinders

• tangent surfaces of space
curves

Pottmann and Wallner: Computational Line Geometry
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Digital Paper Models
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Constrained	Meshes

! Given: 
			single	input	mesh	with	a	set	of	non-linear	constraints	in	terms	of	
mesh	verLces

! Goal:	
" explore	neighboring	meshes	respecLng	the	prescribed	constraints	

" based	on	different	applicaLon	requirements,	navigate	only	the	desirable	
meshes	according	to	given	quality	measures	
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Map Mesh to Point
! The	family	of	meshes	with	same	combinatorics

! Mesh	to	point

! Displacement	vector	to	update	the	current	mesh

! Distance	measure	

x := (v1, . . . , vn) 2 RD

d ) x0 + d

d(x1,x2) := kx1 � x2k
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Constrained Mesh Manifold
! Constrained	mesh	manifold	M:	

" represents	all	the	meshes	under	a	set	of	non-linear	constraints	

! Individual	constraint	
" 																								defines	a	hypersurface	in	 E(xi) = 0 RD
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! Involving	m	constraints	in		

! M	is	the	intersecLon	of	m	hypersurfaces	
" dimension	D-m	(tangent	space)	

" codimension	m	(normal	space)

RD

�i = {x 2 RD|Ei(x) = 0}, i = 1, . . . ,m
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Constrained Mesh Manifold
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" codimension	m	(normal	space)
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Example:	PQ	Mesh	Manifold
! PQ	mesh	manifold	M:	

! Constraints	(planarity	per	face)	
" each	face																			(signed	diagonal	distance)	

 
 
 

" devia6on	from	planarity		

" 10mm	allowance	for	2m	x	2m	panels  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Tangent	Space
! StarLng	mesh							is	PQ	

! Geometrically,	intersecLon	of	all	the	tangent	planes	of	the	hypersurfaces 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Better Approximation?
! Tangent	space		-	1st	order	approximant

straight	path	

ignores	the	curvature	of	the	
manifold

constrained mesh 
manifold
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Better Approximation?
! Be5er	approximaLon	-	2nd	order	approximant	

curved	path	

considers	the	curvature	of	the	
manifold
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Compute Osculant
! GeneralizaLon	of	the	osculaLng	paraboloid	in	3D	

! Has	the	following	form:	

! Second	order	contact	with	each	of	the	constraint

S(u) = x0 +
D�mX

i=1

uiei +
1

2

mX

j=1

(uT ·Aj · u)nj
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Walking on the Osculant
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Mesh	Quality?
! Osculant	concerns	only	constraints	

! Quality	measures	based	on	applicaLon	
" fairness	–	meshes	with	beauLful	structure	

! Extract	the	meaningful	part	of	the	manifold
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What	Do	We	Gain?
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Spectral	Analysis
! Good	(desirable)	subspaces	to	explore	

! 2d-slice	of	design	space



2D	Subspace	



2D	Subspace	
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Handle	Driven	Exploration

min
t

F (x0 + t) such that,

rET
i · t = 0, 8i = 1, . . . ,m;

tj = v0j � vj
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Handle	Driven	Exploration
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Other	Constrained	Meshes
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Circular	Mesh	Manifolds

! Circular	Meshes	
" Each	face	has	a	circumcircle

Ec
i : ↵1 + ↵3 � ⇡
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Circular	Mesh	Shape	Space
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Circular	Mesh	Shape	Space
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Combined Constraints Manifolds
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What can be Folded?
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DEPARTMENT OF COMPUTER SCIENCE
SMART GEOMETRY PROCESSING GROUP

What happens when folding along curved creases?
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String actuated folding
Idea

Given a folding sequence

S : [0, 1]⇥ U ! R3

we are looking for a set of actuation points and network of strings in
order to reproduce the given deformation.
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String actuated folding
Idea

Given a folding sequence

S : [0, 1]⇥ U ! R3

we are looking for a set of actuation points and network of strings in
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String Actuated Folding

DEPARTMENT OF COMPUTER SCIENCE
SMART GEOMETRY PROCESSING GROUP

String actuated folding
Idea

Given a folding sequence

S : [0, 1]⇥ U ! R3

we are looking for a set of actuation points and network of strings in
order to reproduce the given deformation.

S : [0, 1]⇥ U ! R3

S(0) S(1)S(t0)

S(0)

S(1)

S(t0,u)
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Questions
• Which	points	to	connect?

• How	to	connect	the	points?
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String actuated folding
Idea

At every instant t0 2 [0, 1] of time the infinitesimal deformation of the
surface S(t0) is described by the vector field

X (t0,u) :=
@

@t
S(t0,u).
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At every instant t0 2 [0, 1] of time the infinitesimal deformation of the
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Main Idea
• Express	deformaLon	in	terms	of	actua4on	modes

Online Submission ID: papers 0349

S(0) S(1)

Figure 3: A sequence of poses along a deformation S. Red crease curves indicate mountain folds, blue curves valley folds. Boundary curves
and creases which have not been given a fold orientation are shown in gray.

tation of a crease, whether it should form a mountain or a valley,195

is much more important. Essentially only the sign of the fold an-196

gle is important. This is reflected in the usual practice of coloring197

creases or by using specific dash patterns according to fold orien-198

tation. Knowing the orientation of a fold the folded shape is then199

discovered by increasing the fold magnitudes while respecting their200

orientation. This procedure requires patience and a certain amount201

of practice, the main challenge being to handle all folds simulta-202

neously. Not being able to sequentially fold the model is a salient203

feature of curved crease Origami. We relieve the practioner of this204

task by providing a simple means to simultaneously actuate creases205

at the pull of a string. A key observation that makes this possible is206

the fact that we can precondition a fold by precreasing, a technique207

widely used when folding tesselations to make the paper flexible208

along fold lines. Most commonly a crease is folded back and forth209

several times to weaken the paper along the fold. In contrast we210

only consider precreasing according to fold orientation. While a211

practioner uses precreasing mainly to produce sharp and exact folds212

it does not help with the synchronized folding process. This is the213

point where our string actuated folding process can simplify the cre-214

ation process considerably. The workflow of our method consists215

of the following steps:216

• Compute a folding sequence from a given crease pattern and an217

assignment of mountain and valley fold. This sequence is driven218

by fold angles. It is important to note that we do not assume prior219

knowledge of those angles but instead compute them from the CP220

alone.221

• The computed folding sequence serves as target deformation that222

we want to reproduce by the shortening of strings attached to cer-223

tain surface points. This shifts the folding paradigm from angle224

variation to length variation.225

• We validate our method computationally and pratically by realiz-226

ing the computed stringings.227

4 String Actuated Folding228

Once precreased, a CP can be brought from its flat state to a folded229

shape by applying forces at a sparse set of actuation points. The230

process of precreasing, folding a crease according to its moun-231

tain/valley assignment and then unfolding it again, is necessary232

to weaken the sheet along creases. Without precreasing the sheet233

would just crumple arbitrarily. Practically, precreasing is much eas-234

ier than folding the whole model since it is done one crease at a time235

and does not require any coordinated folding along multiple creases236

at once. The most basic variation of precreasing can be achieved by237

scoring the sheet along crease curves either manually or by using a238

plotter/cutter; mountains and valleys have to be scored on opposite239

sides of the sheet to precondition folds properly.240

In the remainder of this section we describe how to identify a sparse
set of actuation points and how to connect them with a sequence of
strings such that shortening of those strings lifts the planar CP to a
folded surface. For the time being we assume that we are given a

folding sequence
S : [0, 1]⇥ U ! R3

241 that transforms the planar sheet S(0) with parameter domain U into
the folded target surface S(1), such that all intermediate surfaces
S(t) are isometric to S(0). Figure 3 shows an example of such
a sequence corresponding to the crease pattern
shown to the right. Because of the physical na-
ture of our problem S cannot be an arbitrary
isometric deformation, there is a strong regu-
larizer given by the bending energy E(S(t)) of
the deforming sheet. Hence, the deformation
sequence S has to be a minimizer of the defor-
mation energy Z 1

0

E(S(t))dt.

Details on how to compute such a sequence are given in Section 5.242

For now the means of discretization are not important and we argue243

in the space of smooth deformations.244

Approach. At every instant t0 2 [0, 1] of time the infinitesimal245

deformation of the surface S(t0) is described by the vector field246

X(t0,u) :=
@

@t
S(t0,u).

Considering the sequence S as a curve in shape space, X(t0) is the
tangent vector to this deformation, see Figure 4. We decompose
such a deformation field into a simpler, finite set of modes Xi that
correspond to infinitesimal deformations induced by certain strings
attached to the surface. Let pi,qi 2 S(t0) be two surface points

S(0)

S(1)

S(t0)

X(t0)X(t0)X(t0)X(t0)X(t0)X(t0)X(t0)X(t0)X(t0)X(t0)X(t0)X(t0)X(t0)X(t0)X(t0)X(t0)X(t0)

X1(t0)
X2(t0)

Xi(t0)

Figure 4: A folding sequence describes a curve S in the space of
developable surfaces, i.e., surfaces isometric to a planar sheet. The
path taken can be imagined as the actions of an artist shaping the
surface with his hands, tangent vectors X to this deformation path
describe what to do next. We decompose this elaborate sequence
of manual interactions into a simple set of modes Xi that can be
realized by attaching strings at certain surface points and activated
by pulling.

3

Xi(t0,u) :=
@

@s
Si(t0)(0,u)
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Figure 3: A sequence of poses along a deformation S. Red crease curves indicate mountain folds, blue curves valley folds. Boundary curves
and creases which have not been given a fold orientation are shown in gray.

tation of a crease, whether it should form a mountain or a valley,195

is much more important. Essentially only the sign of the fold an-196

gle is important. This is reflected in the usual practice of coloring197

creases or by using specific dash patterns according to fold orien-198

tation. Knowing the orientation of a fold the folded shape is then199

discovered by increasing the fold magnitudes while respecting their200

orientation. This procedure requires patience and a certain amount201

of practice, the main challenge being to handle all folds simulta-202

neously. Not being able to sequentially fold the model is a salient203

feature of curved crease Origami. We relieve the practioner of this204

task by providing a simple means to simultaneously actuate creases205

at the pull of a string. A key observation that makes this possible is206

the fact that we can precondition a fold by precreasing, a technique207

widely used when folding tesselations to make the paper flexible208

along fold lines. Most commonly a crease is folded back and forth209

several times to weaken the paper along the fold. In contrast we210

only consider precreasing according to fold orientation. While a211

practioner uses precreasing mainly to produce sharp and exact folds212

it does not help with the synchronized folding process. This is the213

point where our string actuated folding process can simplify the cre-214

ation process considerably. The workflow of our method consists215

of the following steps:216

• Compute a folding sequence from a given crease pattern and an217

assignment of mountain and valley fold. This sequence is driven218

by fold angles. It is important to note that we do not assume prior219

knowledge of those angles but instead compute them from the CP220

alone.221

• The computed folding sequence serves as target deformation that222

we want to reproduce by the shortening of strings attached to cer-223

tain surface points. This shifts the folding paradigm from angle224

variation to length variation.225

• We validate our method computationally and pratically by realiz-226

ing the computed stringings.227

4 String Actuated Folding228

Once precreased, a CP can be brought from its flat state to a folded229

shape by applying forces at a sparse set of actuation points. The230

process of precreasing, folding a crease according to its moun-231

tain/valley assignment and then unfolding it again, is necessary232

to weaken the sheet along creases. Without precreasing the sheet233

would just crumple arbitrarily. Practically, precreasing is much eas-234

ier than folding the whole model since it is done one crease at a time235

and does not require any coordinated folding along multiple creases236

at once. The most basic variation of precreasing can be achieved by237

scoring the sheet along crease curves either manually or by using a238

plotter/cutter; mountains and valleys have to be scored on opposite239

sides of the sheet to precondition folds properly.240

In the remainder of this section we describe how to identify a sparse
set of actuation points and how to connect them with a sequence of
strings such that shortening of those strings lifts the planar CP to a
folded surface. For the time being we assume that we are given a

folding sequence
S : [0, 1]⇥ U ! R3

241 that transforms the planar sheet S(0) with parameter domain U into
the folded target surface S(1), such that all intermediate surfaces
S(t) are isometric to S(0). Figure 3 shows an example of such
a sequence corresponding to the crease pattern
shown to the right. Because of the physical na-
ture of our problem S cannot be an arbitrary
isometric deformation, there is a strong regu-
larizer given by the bending energy E(S(t)) of
the deforming sheet. Hence, the deformation
sequence S has to be a minimizer of the defor-
mation energy Z 1

0

E(S(t))dt.

Details on how to compute such a sequence are given in Section 5.242

For now the means of discretization are not important and we argue243

in the space of smooth deformations.244

Approach. At every instant t0 2 [0, 1] of time the infinitesimal245

deformation of the surface S(t0) is described by the vector field246

X(t0,u) :=
@

@t
S(t0,u).

Considering the sequence S as a curve in shape space, X(t0) is the
tangent vector to this deformation, see Figure 4. We decompose
such a deformation field into a simpler, finite set of modes Xi that
correspond to infinitesimal deformations induced by certain strings
attached to the surface. Let pi,qi 2 S(t0) be two surface points

S(0)

S(1)

S(t0)
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Figure 4: A folding sequence describes a curve S in the space of
developable surfaces, i.e., surfaces isometric to a planar sheet. The
path taken can be imagined as the actions of an artist shaping the
surface with his hands, tangent vectors X to this deformation path
describe what to do next. We decompose this elaborate sequence
of manual interactions into a simple set of modes Xi that can be
realized by attaching strings at certain surface points and activated
by pulling.
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is much more important. Essentially only the sign of the fold an-196

gle is important. This is reflected in the usual practice of coloring197

creases or by using specific dash patterns according to fold orien-198

tation. Knowing the orientation of a fold the folded shape is then199

discovered by increasing the fold magnitudes while respecting their200
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of practice, the main challenge being to handle all folds simulta-202

neously. Not being able to sequentially fold the model is a salient203
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at the pull of a string. A key observation that makes this possible is206
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practioner uses precreasing mainly to produce sharp and exact folds212

it does not help with the synchronized folding process. This is the213

point where our string actuated folding process can simplify the cre-214

ation process considerably. The workflow of our method consists215

of the following steps:216

• Compute a folding sequence from a given crease pattern and an217

assignment of mountain and valley fold. This sequence is driven218

by fold angles. It is important to note that we do not assume prior219

knowledge of those angles but instead compute them from the CP220

alone.221

• The computed folding sequence serves as target deformation that222

we want to reproduce by the shortening of strings attached to cer-223

tain surface points. This shifts the folding paradigm from angle224

variation to length variation.225

• We validate our method computationally and pratically by realiz-226

ing the computed stringings.227

4 String Actuated Folding228

Once precreased, a CP can be brought from its flat state to a folded229

shape by applying forces at a sparse set of actuation points. The230

process of precreasing, folding a crease according to its moun-231

tain/valley assignment and then unfolding it again, is necessary232

to weaken the sheet along creases. Without precreasing the sheet233

would just crumple arbitrarily. Practically, precreasing is much eas-234

ier than folding the whole model since it is done one crease at a time235

and does not require any coordinated folding along multiple creases236

at once. The most basic variation of precreasing can be achieved by237

scoring the sheet along crease curves either manually or by using a238

plotter/cutter; mountains and valleys have to be scored on opposite239

sides of the sheet to precondition folds properly.240

In the remainder of this section we describe how to identify a sparse
set of actuation points and how to connect them with a sequence of
strings such that shortening of those strings lifts the planar CP to a
folded surface. For the time being we assume that we are given a

folding sequence
S : [0, 1]⇥ U ! R3

241 that transforms the planar sheet S(0) with parameter domain U into
the folded target surface S(1), such that all intermediate surfaces
S(t) are isometric to S(0). Figure 3 shows an example of such
a sequence corresponding to the crease pattern
shown to the right. Because of the physical na-
ture of our problem S cannot be an arbitrary
isometric deformation, there is a strong regu-
larizer given by the bending energy E(S(t)) of
the deforming sheet. Hence, the deformation
sequence S has to be a minimizer of the defor-
mation energy Z 1

0

E(S(t))dt.

Details on how to compute such a sequence are given in Section 5.242

For now the means of discretization are not important and we argue243

in the space of smooth deformations.244

Approach. At every instant t0 2 [0, 1] of time the infinitesimal245

deformation of the surface S(t0) is described by the vector field246

X(t0,u) :=
@

@t
S(t0,u).

Considering the sequence S as a curve in shape space, X(t0) is the
tangent vector to this deformation, see Figure 4. We decompose
such a deformation field into a simpler, finite set of modes Xi that
correspond to infinitesimal deformations induced by certain strings
attached to the surface. Let pi,qi 2 S(t0) be two surface points

S(0)

S(1)

S(t0)

X(t0)X(t0)X(t0)X(t0)X(t0)X(t0)X(t0)X(t0)X(t0)X(t0)X(t0)X(t0)X(t0)X(t0)X(t0)X(t0)X(t0)

X1(t0)
X2(t0)

Xi(t0)

Figure 4: A folding sequence describes a curve S in the space of
developable surfaces, i.e., surfaces isometric to a planar sheet. The
path taken can be imagined as the actions of an artist shaping the
surface with his hands, tangent vectors X to this deformation path
describe what to do next. We decompose this elaborate sequence
of manual interactions into a simple set of modes Xi that can be
realized by attaching strings at certain surface points and activated
by pulling.
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X
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�i(t0)Xi(t0)
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Figure 3: A sequence of poses along a deformation S. Red crease curves indicate mountain folds, blue curves valley folds. Boundary curves
and creases which have not been given a fold orientation are shown in gray.
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Figure 5: Actuation modes. Top row (left to right): a network of
strings attached to the shape shown in Figure 3. The deformation
field (orange) is reconstructed as a least norm least squares solu-
tion using the actutation modes corresponding to string edges s1

and s2. Bottom row: actuation modes corresponding to the high-
lighted edges of the string graph (other edges follow by symmetry).

to be joined by a string. Tightening the string reduces the distance
between its endpoints pi and qi. This induces a deformation

Si(t0) : [0, 1]⇥ U ! R3

(s,u) 7! Si(t0)(s,u)

of S(t0) = Si(t0)(0), see Figure 5. The corresponding deforma-247

tion field Xi which we refer to as the mode induced by the string248

connecting the points pi, qi is given as249

Xi(t0,u) =
@

@s
Si(t0)(0,u).

We are looking for a representation of the global deformation field250

X(t0) in terms of the local modes Xi(t0),251

X(t0) =
X

�i(t0)Xi(t0).

In general the set of modes will neither form a basis nor a set of252

generators, i.e., the corresponding matrix is rank deficient. Addi-253

tionally, strings with similar endpoints give rise to similar modes,254

hence we have to deal with a lot of redundancy in the modes. We255

circumvent those problems by computing coefficients � = (�i) as256

a least norm least squares solution to257

kX(t0)�
X

�i(t0)Xi(t0)k2. (1)

This will also minimize the number of non-zeros in the coefficient258

vector [Chen et al. 2001]. While this solves our problem for S(t0)259

it can result in a different sparsity patterns of the coefficient vector260

for times t 6= t0, i.e., the solutions to (1) may not be consistenst261

over time. In summary we are looking for a sparse set of strings,262

i.e., a set of pairs (pi,qi) that minimze263

Z 1

0

kX(t)�
X

�i(t)Xi(t)k2dt, (2)

such that a minimal set of coefficients is active over the whole de-264

formation. Minimiziation subject to a sparsity constraint is a hard265

problem. We present a solution to this problem in our setting in266

Section 6 after introducing our computational framework to com-267

pute the required data.268

5 Deformation Model269

In the following section we present our approach to discretize the270

concepts introduced previously. In a nutshell, we represent surfaces271

as adaptive triangle meshes subject to a non-linear surface energy272

that is crease aware and accounts for both, stretch minimization273

(isometry) and bending.274

Isometric deformations of triangle meshes are characterized by275

rigidly transforming triangles. Such deformations are also re-276

ferred to as as-rigid-as-possible transformations [Sorkine and Alexa277

2007]. We are used to define the shape of a mesh in terms of vertex278

coordinates pi and then define a face �(i, j, k) as a convex combi-279

nation of its vertices280

�ipi + �jpj + �kpk,
X

�⌫ = 1, �⌫ � 0.

Conversely, we can prescribe face transformations Tk and recover281

transformed vertex coordinates by averaging:282

pi =
1

ni

X

k:i2�k

Tk

�
p

k
i

�
, ni = |{k : i 2 �k}|. (3)

Throughout this paper we will use the convention that any triangle283

related properties like vertices, normals, edges, etc. that carry a su-284

perscript k refer to properties of the triangle �k. Our deformation285

model is based on (3), i.e., triangles and their transformations are286

our primary objects of study.287

Our main goal is to model isometric mesh deformations, starting288

from a planar reference mesh. Hence we restrict the set of admissi-289

ble face transformations to rigid body motions. After applying (3)290

this will still incur arbitrarily large distortion if the transformations291

are not chosen carefully. To penalize the amount of stretch we want292

the Tk

�
p

k
i

�
in (3) to be as close as possible before computing pi.293

We achieve this by penalizing the gap between neighboring trian-294

gles �i and �j . We parametrize edges as ei(u) = (1�u)pi+uqi
295

and let296

Aij =

Z 1

0

⇣
Ti(e

i(u))� Tj(e
j(u))

⌘2
du (4)

297

which can be considered as the

�i

�j

energy stored in an elastic strip
that joins both triangles. De-
formations that minimize the
weighted sum

P
aijAij subject

to a sparse set of boundary condi-
tions on some transformations Tk

result in as-rigid-as-possible deformations without any smoothness
properties.

To approximate the deformation behavior of paper, or any other298

sheet material with high in plane stiffness, we need a notion of299

bending energy. The above idea can be generalized by enclosing the300

faces of the initially flat mesh within a thin layer of prisms [Botsch301

et al. 2006]. Each face of the mesh gives rise to such a prism by302

extruding it along its normal (in both directions), see Figure 6. The303

corresponding face transformation acts on the face’s prism intro-304

ducing a gap between prism faces that were perfectly aligned in305

the planar state. To measure this gap a prism face along the edge306

(pi,qi) 2 �i is parametrized as307

F i(u, v) = (1� v)
⇣
(1� u)pi

� + uqi
�

⌘

+ v
⇣
(1� u)pi

+ + uqj
+

⌘
.

(5)
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Figure 5: Actuation modes. Top row (left to right): a network of
strings attached to the shape shown in Figure 3. The deformation
field (orange) is reconstructed as a least norm least squares solu-
tion using the actutation modes corresponding to string edges s1

and s2. Bottom row: actuation modes corresponding to the high-
lighted edges of the string graph (other edges follow by symmetry).
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strings attached to the shape shown in Figure 3. The deformation
field (orange) is reconstructed as a least norm least squares solu-
tion using the actutation modes corresponding to string edges s1

and s2. Bottom row: actuation modes corresponding to the high-
lighted edges of the string graph (other edges follow by symmetry).
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Figure 5: Actuation modes. Top row (left to right): a network of
strings attached to the shape shown in Figure 3. The deformation
field (orange) is reconstructed as a least norm least squares solu-
tion using the actutation modes corresponding to string edges s1

and s2. Bottom row: actuation modes corresponding to the high-
lighted edges of the string graph (other edges follow by symmetry).
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between its endpoints pi and qi. This induces a deformation
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(s,u) 7! Si(t0)(s,u)

of S(t0) = Si(t0)(0), see Figure 5. The corresponding deforma-247

tion field Xi which we refer to as the mode induced by the string248

connecting the points pi, qi is given as249
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Figure 3: A sequence of poses along a deformation S. Red crease curves indicate mountain folds, blue curves valley folds. Boundary curves
and creases which have not been given a fold orientation are shown in gray.

tation of a crease, whether it should form a mountain or a valley,195

is much more important. Essentially only the sign of the fold an-196

gle is important. This is reflected in the usual practice of coloring197

creases or by using specific dash patterns according to fold orien-198

tation. Knowing the orientation of a fold the folded shape is then199

discovered by increasing the fold magnitudes while respecting their200

orientation. This procedure requires patience and a certain amount201

of practice, the main challenge being to handle all folds simulta-202

neously. Not being able to sequentially fold the model is a salient203

feature of curved crease Origami. We relieve the practioner of this204

task by providing a simple means to simultaneously actuate creases205

at the pull of a string. A key observation that makes this possible is206

the fact that we can precondition a fold by precreasing, a technique207

widely used when folding tesselations to make the paper flexible208

along fold lines. Most commonly a crease is folded back and forth209

several times to weaken the paper along the fold. In contrast we210

only consider precreasing according to fold orientation. While a211

practioner uses precreasing mainly to produce sharp and exact folds212

it does not help with the synchronized folding process. This is the213

point where our string actuated folding process can simplify the cre-214

ation process considerably. The workflow of our method consists215

of the following steps:216

• Compute a folding sequence from a given crease pattern and an217

assignment of mountain and valley fold. This sequence is driven218

by fold angles. It is important to note that we do not assume prior219

knowledge of those angles but instead compute them from the CP220

alone.221

• The computed folding sequence serves as target deformation that222

we want to reproduce by the shortening of strings attached to cer-223

tain surface points. This shifts the folding paradigm from angle224

variation to length variation.225

• We validate our method computationally and pratically by realiz-226

ing the computed stringings.227

4 String Actuated Folding228

Once precreased, a CP can be brought from its flat state to a folded229

shape by applying forces at a sparse set of actuation points. The230

process of precreasing, folding a crease according to its moun-231

tain/valley assignment and then unfolding it again, is necessary232

to weaken the sheet along creases. Without precreasing the sheet233

would just crumple arbitrarily. Practically, precreasing is much eas-234

ier than folding the whole model since it is done one crease at a time235

and does not require any coordinated folding along multiple creases236

at once. The most basic variation of precreasing can be achieved by237

scoring the sheet along crease curves either manually or by using a238

plotter/cutter; mountains and valleys have to be scored on opposite239

sides of the sheet to precondition folds properly.240

In the remainder of this section we describe how to identify a sparse
set of actuation points and how to connect them with a sequence of
strings such that shortening of those strings lifts the planar CP to a
folded surface. For the time being we assume that we are given a

folding sequence
S : [0, 1]⇥ U ! R3

241 that transforms the planar sheet S(0) with parameter domain U into
the folded target surface S(1), such that all intermediate surfaces
S(t) are isometric to S(0). Figure 3 shows an example of such
a sequence corresponding to the crease pattern
shown to the right. Because of the physical na-
ture of our problem S cannot be an arbitrary
isometric deformation, there is a strong regu-
larizer given by the bending energy E(S(t)) of
the deforming sheet. Hence, the deformation
sequence S has to be a minimizer of the defor-
mation energy Z 1

0

E(S(t))dt.

Details on how to compute such a sequence are given in Section 5.242

For now the means of discretization are not important and we argue243

in the space of smooth deformations.244

Approach. At every instant t0 2 [0, 1] of time the infinitesimal245

deformation of the surface S(t0) is described by the vector field246

X(t0,u) :=
@

@t
S(t0,u).

Considering the sequence S as a curve in shape space, X(t0) is the
tangent vector to this deformation, see Figure 4. We decompose
such a deformation field into a simpler, finite set of modes Xi that
correspond to infinitesimal deformations induced by certain strings
attached to the surface. Let pi,qi 2 S(t0) be two surface points

S(0)

S(1)

S(t0)

X(t0)X(t0)X(t0)X(t0)X(t0)X(t0)X(t0)X(t0)X(t0)X(t0)X(t0)X(t0)X(t0)X(t0)X(t0)X(t0)X(t0)

X1(t0)
X2(t0)

Xi(t0)

Figure 4: A folding sequence describes a curve S in the space of
developable surfaces, i.e., surfaces isometric to a planar sheet. The
path taken can be imagined as the actions of an artist shaping the
surface with his hands, tangent vectors X to this deformation path
describe what to do next. We decompose this elaborate sequence
of manual interactions into a simple set of modes Xi that can be
realized by attaching strings at certain surface points and activated
by pulling.
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and creases which have not been given a fold orientation are shown in gray.
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at the pull of a string. A key observation that makes this possible is206

the fact that we can precondition a fold by precreasing, a technique207

widely used when folding tesselations to make the paper flexible208

along fold lines. Most commonly a crease is folded back and forth209

several times to weaken the paper along the fold. In contrast we210

only consider precreasing according to fold orientation. While a211

practioner uses precreasing mainly to produce sharp and exact folds212

it does not help with the synchronized folding process. This is the213

point where our string actuated folding process can simplify the cre-214

ation process considerably. The workflow of our method consists215

of the following steps:216
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by fold angles. It is important to note that we do not assume prior219
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• The computed folding sequence serves as target deformation that222

we want to reproduce by the shortening of strings attached to cer-223

tain surface points. This shifts the folding paradigm from angle224

variation to length variation.225

• We validate our method computationally and pratically by realiz-226

ing the computed stringings.227

4 String Actuated Folding228

Once precreased, a CP can be brought from its flat state to a folded229

shape by applying forces at a sparse set of actuation points. The230

process of precreasing, folding a crease according to its moun-231

tain/valley assignment and then unfolding it again, is necessary232

to weaken the sheet along creases. Without precreasing the sheet233

would just crumple arbitrarily. Practically, precreasing is much eas-234

ier than folding the whole model since it is done one crease at a time235

and does not require any coordinated folding along multiple creases236

at once. The most basic variation of precreasing can be achieved by237

scoring the sheet along crease curves either manually or by using a238

plotter/cutter; mountains and valleys have to be scored on opposite239

sides of the sheet to precondition folds properly.240

In the remainder of this section we describe how to identify a sparse
set of actuation points and how to connect them with a sequence of
strings such that shortening of those strings lifts the planar CP to a
folded surface. For the time being we assume that we are given a

folding sequence
S : [0, 1]⇥ U ! R3

241 that transforms the planar sheet S(0) with parameter domain U into
the folded target surface S(1), such that all intermediate surfaces
S(t) are isometric to S(0). Figure 3 shows an example of such
a sequence corresponding to the crease pattern
shown to the right. Because of the physical na-
ture of our problem S cannot be an arbitrary
isometric deformation, there is a strong regu-
larizer given by the bending energy E(S(t)) of
the deforming sheet. Hence, the deformation
sequence S has to be a minimizer of the defor-
mation energy Z 1

0

E(S(t))dt.

Details on how to compute such a sequence are given in Section 5.242

For now the means of discretization are not important and we argue243

in the space of smooth deformations.244

Approach. At every instant t0 2 [0, 1] of time the infinitesimal245

deformation of the surface S(t0) is described by the vector field246

X(t0,u) :=
@

@t
S(t0,u).

Considering the sequence S as a curve in shape space, X(t0) is the
tangent vector to this deformation, see Figure 4. We decompose
such a deformation field into a simpler, finite set of modes Xi that
correspond to infinitesimal deformations induced by certain strings
attached to the surface. Let pi,qi 2 S(t0) be two surface points
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Figure 4: A folding sequence describes a curve S in the space of
developable surfaces, i.e., surfaces isometric to a planar sheet. The
path taken can be imagined as the actions of an artist shaping the
surface with his hands, tangent vectors X to this deformation path
describe what to do next. We decompose this elaborate sequence
of manual interactions into a simple set of modes Xi that can be
realized by attaching strings at certain surface points and activated
by pulling.
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and creases which have not been given a fold orientation are shown in gray.
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Implementation Details
• Isometric	deforma4on	framework	

– driven	by	string	lengths	

– searching	for	fold	angles 

• Prevent	self-intersec4on	

• Pruning	iniLal	string	candidates 

• Dynamic	triangulaLon
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Code For Machines 

• Giga voxels/inch3, Tera voxels/foot3 

• What are good exchange formats? Standards? 

• Smart and reusable material definitions 

• Dithering strategies to obtain halftones representations 

• Resolution and printer independence 

• Simulate printing processes 

• Predict qualtiy 

• Help users to deal with parameters 

• Promoting open-source environment vs. commercial products 

 



Cabin bracket for the Airbus A350 XWB made of Ti  
 manufactured by Concept Laser GmbH [image from 3ders.org] 
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Going Beyond What an Engineer Can Do 

 



Empowering Everyday Users 

 

[Zhang et al. 2017] 
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Granular Materials 

[Gramazio Kohler Research, ETHZ, and Self-Assembly Lab, MIT] 


