Surface Reconstruction

Pierre Alliez

Inria Sophia Antipolis – Méditerranée

TITANE team: https://team.inria.fr/titane/

pierre.alliez@inria.fr

Outline

- Context
 - Sensors
 - Applications
- Problem statement
- Main approaches
- Quest for robustness
- What next

nría

Context

Sensors

- Contact -> contact-free
- Short -> long range sensing

Contact

Laser

Aerial

Remote Sensing

Context

Sensors

- Structured-light (infrared, active)
- Passive stereo vision
- Digital cameras

Depth sensing

Photo-modeling

Context

Instrumented sensors

- Accelerometer
- Gyroscope
- GPS
- Compass / magnetometer
- Robotized platforms

Photo Phoenix Aerial Systems

Inría

Digitizing the Physical World

Applications

Computational engineering

Biology Computer-aided medicine Zheng et al. 4D Reconstruction of Blooming Flowers.

Scene interpretation Choi et al. Robust Reconstruction of Indoor Scenes.

Underwater exploration Geology / Archeology

Cultural Heritage Data from Culture 3D Cloud [De Luca].

PROBLEM STATEMENT

Problem Statement

Scientific Challenge

(nría_

Real-World Problems

Input:

Dense point set *P* sampled over surface *S*:

- Imperfect sampling
 - Non-uniform
 - Anisotropic
 - Missing data (holes)
- Uncertainty
 - Noise

Real-World Problems

Input:

Dense point set *P* sampled over surface *S*:

- Imperfect sampling
 - Non-uniform
 - Anisotropic
 - Missing data (holes)
- Uncertainty
 - Noise
 - Outliers

"La lune": Data from Dassault Systèmes. Sun King's flagship, sank off the Toulon coastline in 1664.

Ínría_

Real-World Problems

Input:

Point set *P* sampled over surface *S*:

- Imperfect sampling
 - Non-uniform
 - Anisotropic
 - Missing data (holes)
- Uncertainty
 - Noise
 - Outliers

Output:

Surface: Approximation of S in terms of topology and geometry

Desired properties:

- Watertight
- Intersection free
- Data fitting vs smoothness

Inría

Ill-posed Problem

Many candidate shapes for the reconstruction problem.

Ill-posed Problem

Many candidate shapes for the reconstruction problem.

MAIN APPROACHES

Priors

Smooth

Piecewise Smooth

"Simple"

Surface Smoothness Priors

Inría

Domain-Specific Priors

Priors

Smooth

Piecewise Smooth

"Simple"

Voronoi Diagram & Delaunay Triangulation

Let $\mathcal{E} = {\mathbf{p_1}, \ldots, \mathbf{p_n}}$ be a set of points (so-called sites) in \mathbb{R}^d . We associate to each site $\mathbf{p_i}$ its Voronoi region $V(\mathbf{p_i})$ such that:

$$V(\mathbf{p}_{\mathbf{i}}) = \{\mathbf{x} \in \mathbb{R}^{d} : \|\mathbf{x} - \mathbf{p}_{\mathbf{i}}\| \le \|\mathbf{x} - \mathbf{p}_{\mathbf{j}}\|, \forall j \le n\}.$$

Delaunay triangulation: simplicial complex such that k+1 points form a Delaunay simplex if their Voronoi cells have nonempty intersection.

Delaunay-based Reconstruction

Key idea: assuming dense enough sampling, reconstructed triangles are Delaunay triangles.

Delaunay-based Reconstruction

Key idea: assuming <u>dense enough</u> sampling, reconstructed triangles are Delaunay triangles.

First define

- Medial axis
- Local feature size
- Epsilon-sampling

naía.

Medial Axis (2D)

Medial Axis

(nría_

Medial Axis

(nría_

Voronoi Diagram & Medial Axis

Local Feature Size

Epsilon-Sampling

(nría_

Crust Algorithm [Amenta et al.]

Delaunay Triangulation

(nría_

(nría_

Augmented Delaunay Triangulation

(nría_

Figure from O. Devillers

Delaunay-based Reconstruction

Several Delaunay algorithms are provably correct

- Boissonnat
- Amenta, Bern, Eppstein
- Attali
- Dey, Goswami
- Cazals & Giesen
- ...

Dey. Curve and surface reconstruction: algorithms with mathematical analysis.

Delaunay-based Reconstruction

Several Delaunay algorithms are **provably correct**... in the absence of noise and undersampling.

------ perfect data ?

Delaunay-based Reconstruction

Several Delaunay algorithms are **provably correct**... in the absence of noise and undersampling.

Motivates reconstruction by fitting approximating implicit surfaces

Implicit Surface Approaches

Solve for scalar function (IR³ -> IR) defined as approximate

- <u>Signed distance</u> to inferred surface *S* [Hoppe 92, Carr et al. 01, Belyaev et al. 02]
- <u>Unsigned distance</u> to S
 [Hornung-Kobbelt 06]
- <u>Indicator</u> (characteristic) function of inferred solid
 [Kahzdan et al. 06]

Priors

Smooth

Piecewise Smooth

"Simple"

Indicator Function

Compute indicator function from oriented points (points + normals)

nría

Poisson Surface Reconstruction

Compute indicator function from oriented points

Poisson Surface Reconstruction. Kazhdan, Bolitho, Hoppe. EUROGRAPHICS Symposium on Geometry Processing 2006.

2D Poisson Reconstruction

3D Poisson Reconstruction

Oriented point set (data from CNR Pisa)

Reconstructed surface (via CGAL library)

Failure Case 1

(nría-

Failure Case 2

QUEST FOR ROBUSTNESS

Quest for Robustness

Poisson Reconstruction

Requires <u>oriented normals</u>, as many other implicit approaches.

nría

Poisson Reconstruction

Requires <u>oriented normals</u>, as many other implicit approaches.

Normal estimation Normal orientation

ill-posed problems

Poisson Reconstruction

Can we deal with <u>unoriented normals</u>?

nría_

Unoriented Normals?

Spectral Reconstruction

Voronoi-based Variational Reconstruction of Unoriented Point Sets. A., Cohen-Steiner, Tong, Desbrun. EUROGRAPHICS Symposium on Geometry Processing 2007.

Tensor Estimation

 $\int_{\Omega} (X - p)(X - p)^T dV$

(nría_

Noise-free vs Noisy

Dealing with Noise

Implicit Function

Tensors

Implicit function

Formulation

Find implicit function f such that its gradient ∇f best aligns to the principal component of the tensors.

Formulation

Find implicit function f such that its gradient ∇f best aligns to the principal component of the tensors.

(nría_

Rationale

On areas with:

<u>anisotropic</u> tensors: favors alignment <u>isotropic</u> tensors: favors smoothness

Large aligned gradients + smoothness

leads to consistent orientation of ∇f

Generalized Eigenvalue Problem

Given a tensor field *C*, find the *maximizer f* of:

$$E_{C}^{D}(f) = \int_{\Omega} \nabla f^{t} C \nabla f \text{ subject to:} \int_{\Omega} \left[|\Delta f|^{2} + \varepsilon |f|^{2} \right] = 1$$

$$\downarrow$$
A: anisotropic Laplacian operator
$$E_{C}^{D}(F) \approx F^{t} A F \qquad B: \text{ isotropic Bilaplacian operator}$$

$$E^{B}(f) \approx F^{t} B F$$

$$AF = \lambda BF$$

$$\max$$
Eigenvector

Eigenvector

Implicit Reconstruction

(nría_

Robustness to Sparse Sampling

(nría_

Robustness to Noise

(nría_

vs Poisson Reconstruction

Oriented points

Poisson

Spectral

vs Poisson Reconstruction

(nría_

Motivations

Complex shapes:

- Sharp features
- Boundaries
- Non-manifold features

Calls for feature preservation

Approach in 2D

Given a point set S, find a coarse triangulation T such that S is well approximated by uniform measures on the O- and 1-simplices of T.

Ínría
Approach in 2D

Given a point set *S*, find a coarse triangulation *T* such that *S* is well approximated by uniform measures on the 0- and 1-simplices of *T*.

How to measure distance D(S,T)?

 \Rightarrow optimal transport between measures

How to construct *T* that minimizes D(*S*,*T*)?

optimal location problem \Rightarrow greedy decimation

- Mérigot
- Peyré
- Schmitzer
- Cuturi
- Solomon

• ...

Distance between Measures (1D)

Transport plan:

 π on $\mathbb{R}\times\mathbb{R}$ whose marginals are A and B

Transport cost:

$$W_2(A, B, \pi) = \left(\int_{\mathbb{R}\times\mathbb{R}} \|x - y\|^2 d\pi(x, y)\right)^{1/2}$$

Optimal transport:

Distance between Measures (1D)

Transport plan: Transport cost: Optimal transport:

$$\pi$$
 on $\mathbb{R} \times \mathbb{R}$ whose marginals are A and B
 $W_2(A, B, \pi) = \left(\int_{\mathbb{R} \times \mathbb{R}} \|x - y\|^2 d\pi(x, y) \right)^{1/2}$
 $W_2(A, B) = \inf_{\pi} W_2(A, B, \pi)$

Piecewise Uniform Measures

Algorithm Overview

An Optimal Transport Approach to Robust Reconstruction and Simplification of 2D Shapes. De Goes, Cohen-Steiner, A., Desbrun. EUROGRAPHICS Symposium on Geometry Processing 2011.

Robustness

Inría

More Outliers

Inría

Features and Robustness

(nría_

Surface Reconstruction?

Ínría

Surface Reconstruction?

Solve through Linear Programming

Minimize $\sum_{ij} m_{ij} ||p_i - b_j||^2$ w.r.t. the variables m_{ij} and l_j , and subject to:

Feature-Preserving Surface Reconstruction and Simplification from Defect-Laden Point Sets. Digne, Cohen-Steiner, A., Desbrun, De Goes. Journal of Mathematical Imaging and Vision.

Vertex Relocation

Stairs

Stairs

(nría-

LIDAR Data (urban)

(nría_

Blade

WHAT NEXT

Priors

Smooth

Piecewise Smooth

<u>"Simple"</u>

Machine learning

Novel Acquisition Paradigms

• « Dip » transform

No.	Vertical angle(*)	Horizontal angle(*)	Height(mm)	Water level(mm)
1	24.000	0.000	-155.000	185.28
2	24.000	0.000	-160.000	185.28
3	24.000	0.000	-165.000	185.28
4	24.000	0.000	-170.000	185.28
5	24.000	0.000	-175.000	185.28
6	24.000	0.000	-180.000	185.28
7	24.000	0.000	-185.000	185.28
8	24.000	0.000	-190.000	185.28
9	24.000	0.000	-195.000	185.28
10	24.000	0.000	-200.000	185.32
11	24.000	0.000	-205.000	185.40
12	24.000	0.000	-210.000	185.56
13	24.000	0.000	-215.000	185.72
14	24.000	0.000	-220.000	185.88
15	24.000	0.000	-225.000	186.00
16	24.000	0.000	-230.000	186.12
17	24.000	0.000	-235.000	186.32

Dip Transform for 3D Shape Reconstruction. Aberman et al. To appear at ACM SIGGRAPH 2017

Ínría

Novel Acquisition Paradigms

• Community data

Snavely, Seitz, Szeliski. Photo tourism: Exploring photo collections in 3D.

Novel Acquisition Paradigms

Sensor networks

Scientific challenges:

- Fusion from heterogeneous sensors
- Progressive acquisition
- Continuous update
- High level queries

nría

3D Digitization

Societal impact:

- Cultural heritage accessible for all
- Telepresence via virtual/augmented/mixed reality
- New era of mass customization

nain-

Thank you.

Recent survey:

A Survey of Surface Reconstruction from Point Clouds. Berger, Tagliasacchi, Seversky, Alliez, Guennebaud, Levine, Sharf and Silva. Computer Graphics Forum, 2016.

Pierre Alliez

Inria Sophia Antipolis – Méditerranée

TITANE team: https://team.inria.fr/titane/

pierre.alliez@inria.fr

