
Laplace-Beltrami:
The Swiss Army Knife of Geometry Processing

(SGP 2014 Tutorial—July 7 2014)

Justin Solomon / Stanford University
Keenan Crane / Columbia University
Etienne Vouga / Harvard University

INTRODUCTION

Introduction

• Laplace-Beltrami operator (“Laplacian”) provides a basis for
a diverse variety of geometry processing tasks.

• Remarkably common pipeline:
1 simple pre-processing (build f)
2 solve a PDE involving the Laplacian (e.g., ∆u = f)
3 simple post-processing (do something with u)

• Expressing tasks in terms of Laplacian/smooth PDEs
makes life easier at code/implementation level.

• Lots of existing theory to help understand/interpret
algorithms, provide analysis/guarantees.

• Also makes it easy to work with a broad range of
geometric data structures (meshes, point clouds, etc.)

Introduction

• Laplace-Beltrami operator (“Laplacian”) provides a basis for
a diverse variety of geometry processing tasks.

• Remarkably common pipeline:

1 simple pre-processing (build f)
2 solve a PDE involving the Laplacian (e.g., ∆u = f)
3 simple post-processing (do something with u)

• Expressing tasks in terms of Laplacian/smooth PDEs
makes life easier at code/implementation level.

• Lots of existing theory to help understand/interpret
algorithms, provide analysis/guarantees.

• Also makes it easy to work with a broad range of
geometric data structures (meshes, point clouds, etc.)

Introduction

• Laplace-Beltrami operator (“Laplacian”) provides a basis for
a diverse variety of geometry processing tasks.

• Remarkably common pipeline:
1 simple pre-processing (build f)

2 solve a PDE involving the Laplacian (e.g., ∆u = f)
3 simple post-processing (do something with u)

• Expressing tasks in terms of Laplacian/smooth PDEs
makes life easier at code/implementation level.

• Lots of existing theory to help understand/interpret
algorithms, provide analysis/guarantees.

• Also makes it easy to work with a broad range of
geometric data structures (meshes, point clouds, etc.)

Introduction

• Laplace-Beltrami operator (“Laplacian”) provides a basis for
a diverse variety of geometry processing tasks.

• Remarkably common pipeline:
1 simple pre-processing (build f)
2 solve a PDE involving the Laplacian (e.g., ∆u = f)

3 simple post-processing (do something with u)

• Expressing tasks in terms of Laplacian/smooth PDEs
makes life easier at code/implementation level.

• Lots of existing theory to help understand/interpret
algorithms, provide analysis/guarantees.

• Also makes it easy to work with a broad range of
geometric data structures (meshes, point clouds, etc.)

Introduction

• Laplace-Beltrami operator (“Laplacian”) provides a basis for
a diverse variety of geometry processing tasks.

• Remarkably common pipeline:
1 simple pre-processing (build f)
2 solve a PDE involving the Laplacian (e.g., ∆u = f)
3 simple post-processing (do something with u)

• Expressing tasks in terms of Laplacian/smooth PDEs
makes life easier at code/implementation level.

• Lots of existing theory to help understand/interpret
algorithms, provide analysis/guarantees.

• Also makes it easy to work with a broad range of
geometric data structures (meshes, point clouds, etc.)

Introduction

• Laplace-Beltrami operator (“Laplacian”) provides a basis for
a diverse variety of geometry processing tasks.

• Remarkably common pipeline:
1 simple pre-processing (build f)
2 solve a PDE involving the Laplacian (e.g., ∆u = f)
3 simple post-processing (do something with u)

• Expressing tasks in terms of Laplacian/smooth PDEs
makes life easier at code/implementation level.

• Lots of existing theory to help understand/interpret
algorithms, provide analysis/guarantees.

• Also makes it easy to work with a broad range of
geometric data structures (meshes, point clouds, etc.)

Introduction

• Laplace-Beltrami operator (“Laplacian”) provides a basis for
a diverse variety of geometry processing tasks.

• Remarkably common pipeline:
1 simple pre-processing (build f)
2 solve a PDE involving the Laplacian (e.g., ∆u = f)
3 simple post-processing (do something with u)

• Expressing tasks in terms of Laplacian/smooth PDEs
makes life easier at code/implementation level.

• Lots of existing theory to help understand/interpret
algorithms, provide analysis/guarantees.

• Also makes it easy to work with a broad range of
geometric data structures (meshes, point clouds, etc.)

Introduction

• Laplace-Beltrami operator (“Laplacian”) provides a basis for
a diverse variety of geometry processing tasks.

• Remarkably common pipeline:
1 simple pre-processing (build f)
2 solve a PDE involving the Laplacian (e.g., ∆u = f)
3 simple post-processing (do something with u)

• Expressing tasks in terms of Laplacian/smooth PDEs
makes life easier at code/implementation level.

• Lots of existing theory to help understand/interpret
algorithms, provide analysis/guarantees.

• Also makes it easy to work with a broad range of
geometric data structures (meshes, point clouds, etc.)

Introduction

• Goals of this tutorial:

• Understand the Laplacian in the smooth setting. (Etienne)

• Build the Laplacian in the discrete setting. (Keenan)

• Use Laplacian to implement a variety of methods. (Justin)

Introduction

• Goals of this tutorial:
• Understand the Laplacian in the smooth setting. (Etienne)

• Build the Laplacian in the discrete setting. (Keenan)

• Use Laplacian to implement a variety of methods. (Justin)

Introduction

• Goals of this tutorial:
• Understand the Laplacian in the smooth setting. (Etienne)

• Build the Laplacian in the discrete setting. (Keenan)

• Use Laplacian to implement a variety of methods. (Justin)

Introduction

• Goals of this tutorial:
• Understand the Laplacian in the smooth setting. (Etienne)

• Build the Laplacian in the discrete setting. (Keenan)

• Use Laplacian to implement a variety of methods. (Justin)

SMOOTH THEORY

The Interpolation Problem

Ω

∂Ω

f = −1

f = 1

• given:
• region Ω ⊂ R2 with boundary ∂Ω
• function f on ∂Ω

fill in f “as smoothly as possible”

• (what does this even mean?)
• smooth:

• constant functions
• linear functions

• not smooth:
• f not C1

• large variations over short distances
• (‖∇f‖ large)

The Interpolation Problem

Ω

∂Ω

f = −1

f = 1

• given:
• region Ω ⊂ R2 with boundary ∂Ω
• function f on ∂Ω

fill in f “as smoothly as possible”

• (what does this even mean?)

• smooth:
• constant functions
• linear functions

• not smooth:
• f not C1

• large variations over short distances
• (‖∇f‖ large)

The Interpolation Problem

Ω

∂Ω

f = −1

f = 1

• given:
• region Ω ⊂ R2 with boundary ∂Ω
• function f on ∂Ω

fill in f “as smoothly as possible”

• (what does this even mean?)
• smooth:

• constant functions
• linear functions

• not smooth:
• f not C1

• large variations over short distances
• (‖∇f‖ large)

The Interpolation Problem

Ω

∂Ω

f = −1

f = 1

• given:
• region Ω ⊂ R2 with boundary ∂Ω
• function f on ∂Ω

fill in f “as smoothly as possible”

• (what does this even mean?)
• smooth:

• constant functions
• linear functions

• not smooth:
• f not C1

• large variations over short distances
• (‖∇f‖ large)

The Interpolation Problem

Ω

∂Ω

f = −1

f = 1

• given:
• region Ω ⊂ R2 with boundary ∂Ω
• function f on ∂Ω

fill in f “as smoothly as possible”

• (what does this even mean?)
• smooth:

• constant functions
• linear functions

• not smooth:
• f not C1

• large variations over short distances
• (‖∇f‖ large)

Dirichlet Energy

non-smooth f (x)

〈∇f ,∇f 〉

• E(f) =
∫

Ω〈∇f ,∇f 〉 dA
• properties:

• nonnegative
• zero for constant functions
• measures smoothness

• solution to interpolation problem is
minimizer of E

• how do we find minimum?

Dirichlet Energy

non-smooth f (x)

〈∇f ,∇f 〉

• E(f) =
∫

Ω〈∇f ,∇f 〉 dA
• properties:

• nonnegative
• zero for constant functions
• measures smoothness

• solution to interpolation problem is
minimizer of E

• how do we find minimum?

Dirichlet Energy

non-smooth f (x)

〈∇f ,∇f 〉

• E(f) =
∫

Ω〈∇f ,∇f 〉 dA
• properties:

• nonnegative
• zero for constant functions
• measures smoothness

• solution to interpolation problem is
minimizer of E

• how do we find minimum?

Dirichlet Energy

non-smooth f (x)

〈∇f ,∇f 〉

• E(f) =
∫

Ω〈∇f ,∇f 〉 dA
• it can be shown that:

• E(f) = C−
∫

Ω f ∆f dA

• −2∆f is the gradient of Dirichlet energy
• f minimizes E if ∆f = 0

• PDE form (Laplace’s Equation):

∆f (x) = 0 x ∈ Ω

f (x) = f0(x) x ∈ ∂Ω

• physical interpretation: temperature at
steady state

Dirichlet Energy

non-smooth f (x)

∆f

• E(f) =
∫

Ω〈∇f ,∇f 〉 dA
• it can be shown that:

• E(f) = C−
∫

Ω f ∆f dA
• −2∆f is the gradient of Dirichlet energy

• f minimizes E if ∆f = 0

• PDE form (Laplace’s Equation):

∆f (x) = 0 x ∈ Ω

f (x) = f0(x) x ∈ ∂Ω

• physical interpretation: temperature at
steady state

Dirichlet Energy

non-smooth f (x)

∆f

• E(f) =
∫

Ω〈∇f ,∇f 〉 dA
• it can be shown that:

• E(f) = C−
∫

Ω f ∆f dA
• −2∆f is the gradient of Dirichlet energy
• f minimizes E if ∆f = 0

• PDE form (Laplace’s Equation):

∆f (x) = 0 x ∈ Ω

f (x) = f0(x) x ∈ ∂Ω

• physical interpretation: temperature at
steady state

Dirichlet Energy

non-smooth f (x)

solution ∆f = 0

• E(f) =
∫

Ω〈∇f ,∇f 〉 dA
• it can be shown that:

• E(f) = C−
∫

Ω f ∆f dA
• −2∆f is the gradient of Dirichlet energy
• f minimizes E if ∆f = 0

• PDE form (Laplace’s Equation):

∆f (x) = 0 x ∈ Ω

f (x) = f0(x) x ∈ ∂Ω

• physical interpretation: temperature at
steady state

Dirichlet Energy

non-smooth f (x)

solution ∆f = 0

• E(f) =
∫

Ω〈∇f ,∇f 〉 dA
• it can be shown that:

• E(f) = C−
∫

Ω f ∆f dA
• −2∆f is the gradient of Dirichlet energy
• f minimizes E if ∆f = 0

• PDE form (Laplace’s Equation):

∆f (x) = 0 x ∈ Ω

f (x) = f0(x) x ∈ ∂Ω

• physical interpretation: temperature at
steady state

On a Surface
f = −1

f = 1

boundary conditions nonsmooth f (x)

• can still define Dirichlet energy E(f) =
∫

M〈∇f ,∇f 〉
• ∇E(f) = −∆f , now ∆ is the Laplace-Beltrami operator of M

• also works in higher dimensions, on discrete graphs/point
clouds, . . .

On a Surface
f = −1

f = 1

boundary conditions nonsmooth f (x) 〈∇f ,∇f 〉

• can still define Dirichlet energy E(f) =
∫

M〈∇f ,∇f 〉

• ∇E(f) = −∆f , now ∆ is the Laplace-Beltrami operator of M

• also works in higher dimensions, on discrete graphs/point
clouds, . . .

On a Surface
f = −1

f = 1

boundary conditions nonsmooth f (x) ∆f = 0

• can still define Dirichlet energy E(f) =
∫

M〈∇f ,∇f 〉
• ∇E(f) = −∆f , now ∆ is the Laplace-Beltrami operator of M

• also works in higher dimensions, on discrete graphs/point
clouds, . . .

On a Surface
f = −1

f = 1

boundary conditions nonsmooth f (x) ∆f = 0

• can still define Dirichlet energy E(f) =
∫

M〈∇f ,∇f 〉
• ∇E(f) = −∆f , now ∆ is the Laplace-Beltrami operator of M

• also works in higher dimensions, on discrete graphs/point
clouds, . . .

Existence and Uniqueness

• Laplace’s equation

∆f (x) = 0 x ∈ M

f (x) = f0(x) x ∈ ∂M

has a unique solution for all reasonable1 surfaces M

1e.g. compact, smooth, with piecewise smooth boundary

Existence and Uniqueness

• Laplace’s equation

∆f (x) = 0 x ∈ M

f (x) = f0(x) x ∈ ∂M

has a unique solution for all reasonable1 surfaces M

• physical interpretation: apply heating/cooling f0 to the
boundary of a metal plate. Interior temperature will reach
some steady state

• gradient descent is exactly the heat or diffusion equation

df
dt
(x) = ∆f (x).

1e.g. compact, smooth, with piecewise smooth boundary

Existence and Uniqueness

• Laplace’s equation

∆f (x) = 0 x ∈ M

f (x) = f0(x) x ∈ ∂M

has a unique solution for all reasonable1 surfaces M

• physical interpretation: apply heating/cooling f0 to the
boundary of a metal plate. Interior temperature will reach
some steady state

• gradient descent is exactly the heat or diffusion equation

df
dt
(x) = ∆f (x).

1e.g. compact, smooth, with piecewise smooth boundary

Heat Equation Illustrated

time

Boundary Conditions

Ω

∂ΩD

∂ΩN

g0 = 0

f0 = −1

f0 = 1

• can specify ∇f · n̂ on boundary instead
of f :

∆f (x) = 0 x ∈ Ω

f (x) = f0(x) x ∈ ∂ΩD (Dirichlet bdry)

∇f · n̂ = g0(x) x ∈ ∂ΩN (Neumann bdry)

• usually: g0 = 0 (natural bdry conds)

• physical interpretation: free boundary
through which heat cannot flow

Boundary Conditions

Ω

∂ΩD

∂ΩN

g0 = 0

f0 = −1

f0 = 1

• can specify ∇f · n̂ on boundary instead
of f :

∆f (x) = 0 x ∈ Ω

f (x) = f0(x) x ∈ ∂ΩD (Dirichlet bdry)

∇f · n̂ = g0(x) x ∈ ∂ΩN (Neumann bdry)

• usually: g0 = 0 (natural bdry conds)

• physical interpretation: free boundary
through which heat cannot flow

Boundary Conditions

Ω

∂ΩD

∂ΩN

g0 = 0

f0 = −1

f0 = 1

• can specify ∇f · n̂ on boundary instead
of f :

∆f (x) = 0 x ∈ Ω

f (x) = f0(x) x ∈ ∂ΩD (Dirichlet bdry)

∇f · n̂ = g0(x) x ∈ ∂ΩN (Neumann bdry)

• usually: g0 = 0 (natural bdry conds)

• physical interpretation: free boundary
through which heat cannot flow

Interpolation with ∆ in Practice

in geometry processing:

• positions

• displacements

• vector fields

• parameterizations

• . . . you name it

Joshi et al

Eck et al

Sorkine and Cohen-Or

Heat Equation with Source
f = −1

∂f
∂t = 1

• what if you add heat sources inside Ω?

df
dt
(x) = g(x) + ∆f (x)

• PDE form: Poisson’s equation

∆f (x) = g(x) x ∈ Ω

f (x) = f0(x) x ∈ ∂Ω

• common variational problem:

min
f

∫
M
〈∇f − v,∇f − v〉 dA

• becomes Poisson problem, g = ∇ · v

Heat Equation with Source
f = −1

∂f
∂t = 1

• what if you add heat sources inside Ω?

df
dt
(x) = g(x) + ∆f (x)

• PDE form: Poisson’s equation

∆f (x) = g(x) x ∈ Ω

f (x) = f0(x) x ∈ ∂Ω

• common variational problem:

min
f

∫
M
〈∇f − v,∇f − v〉 dA

• becomes Poisson problem, g = ∇ · v

Heat Equation with Source
f = −1

∂f
∂t = 1

• what if you add heat sources inside Ω?

df
dt
(x) = g(x) + ∆f (x)

• PDE form: Poisson’s equation

∆f (x) = g(x) x ∈ Ω

f (x) = f0(x) x ∈ ∂Ω

• common variational problem:

min
f

∫
M
〈∇f − v,∇f − v〉 dA

• becomes Poisson problem, g = ∇ · v

Heat Equation with Source
f = −1

∂f
∂t = 1

• what if you add heat sources inside Ω?

df
dt
(x) = g(x) + ∆f (x)

• PDE form: Poisson’s equation

∆f (x) = g(x) x ∈ Ω

f (x) = f0(x) x ∈ ∂Ω

• common variational problem:

min
f

∫
M
〈∇f − v,∇f − v〉 dA

• becomes Poisson problem, g = ∇ · v

Heat Equation with Source
f = −1

∂f
∂t = 1

• what if you add heat sources inside Ω?

df
dt
(x) = g(x) + ∆f (x)

• PDE form: Poisson’s equation

∆f (x) = g(x) x ∈ Ω

f (x) = f0(x) x ∈ ∂Ω

• common variational problem:

min
f

∫
M
〈∇f − v,∇f − v〉 dA

• becomes Poisson problem, g = ∇ · v

Essential Algebraic Properties I

• linearity: ∆ (f (x) + αg(x)) = ∆f (x) + α∆g(x)

• constants in kernel: ∆α = 0

for functions that vanish on ∂M:

• self-adjoint:
∫

M
f ∆g dA = −

∫
M
〈∇f ,∇g〉 dA =

∫
M

g∆f dA

• negative:
∫

M
f ∆f dA ≤ 0

(intuition: ∆ ≈ an ∞-dimensional negative-semidefinite matrix)

Essential Algebraic Properties I

• linearity: ∆ (f (x) + αg(x)) = ∆f (x) + α∆g(x)

• constants in kernel: ∆α = 0

for functions that vanish on ∂M:

• self-adjoint:
∫

M
f ∆g dA = −

∫
M
〈∇f ,∇g〉 dA =

∫
M

g∆f dA

• negative:
∫

M
f ∆f dA ≤ 0

(intuition: ∆ ≈ an ∞-dimensional negative-semidefinite matrix)

Essential Algebraic Properties I

• linearity: ∆ (f (x) + αg(x)) = ∆f (x) + α∆g(x)

• constants in kernel: ∆α = 0

for functions that vanish on ∂M:

• self-adjoint:
∫

M
f ∆g dA = −

∫
M
〈∇f ,∇g〉 dA =

∫
M

g∆f dA

• negative:
∫

M
f ∆f dA ≤ 0

(intuition: ∆ ≈ an ∞-dimensional negative-semidefinite matrix)

Essential Algebraic Properties I

• linearity: ∆ (f (x) + αg(x)) = ∆f (x) + α∆g(x)

• constants in kernel: ∆α = 0

for functions that vanish on ∂M:

• self-adjoint:
∫

M
f ∆g dA = −

∫
M
〈∇f ,∇g〉 dA =

∫
M

g∆f dA

• negative:
∫

M
f ∆f dA ≤ 0

(intuition: ∆ ≈ an ∞-dimensional negative-semidefinite matrix)

Solving Poisson’s Equation with Green’s Functions

• the Green’s function G on R2 solves ∆f = g for g = δ

• linearity: if g = ∑ αiδ(x− xi), f = ∑ αiG(x− xi)

• for any g, f = G ∗ g

δ(x) G(x)

Solving Poisson’s Equation with Green’s Functions

• the Green’s function G on R2 solves ∆f = g for g = δ

• linearity: if g = ∑ αiδ(x− xi), f = ∑ αiG(x− xi)

• for any g, f = G ∗ g

δ(x) G(x)

Solving Poisson’s Equation with Green’s Functions

• the Green’s function G on R2 solves ∆f = g for g = δ

• linearity: if g = ∑ αiδ(x− xi), f = ∑ αiG(x− xi)

• for any g, f = G ∗ g

δ(x) G(x)

Essential Algebraic Properties II
a function f : M→ R with ∆f = 0 is called harmonic. Properties:

• f is smooth and analytic

• f (x) is the average of f over any disk around x:

f (x) =
1

πr2

∫
B(x,r)

f (y) dA

some harmonic f (x, y)

Essential Algebraic Properties II
a function f : M→ R with ∆f = 0 is called harmonic. Properties:

• f is smooth and analytic
• f (x) is the average of f over any disk around x:

f (x) =
1

πr2

∫
B(x,r)

f (y) dA

Essential Algebraic Properties II
a function f : M→ R with ∆f = 0 is called harmonic. Properties:

• f is smooth and analytic
• f (x) is the average of f over any disk around x:

f (x) =
1

πr2

∫
B(x,r)

f (y) dA

• maximum principle: f has no local maxima or minima in M

Essential Algebraic Properties II
a function f : M→ R with ∆f = 0 is called harmonic. Properties:

• f is smooth and analytic
• f (x) is the average of f over any disk around x:

f (x) =
1

πr2

∫
B(x,r)

f (y) dA

• maximum principle: f has no local maxima or minima in M

• (can have saddle points)

Essential Geometric Properties I

for a curve γ(u) = (x[u], y[u]) : R→ R2

• ∆γ = (∆x, ∆y) is gradient of arc length

• ∆γ is the curvature normal κn̂

• minimal curves are harmonic

(straight lines)

Essential Geometric Properties I

for a curve γ(u) = (x[u], y[u]) : R→ R2

• ∆γ = (∆x, ∆y) is gradient of arc length

• ∆γ is the curvature normal κn̂

• minimal curves are harmonic

(straight lines)

Essential Geometric Properties I

for a curve γ(u) = (x[u], y[u]) : R→ R2

• ∆γ = (∆x, ∆y) is gradient of arc length

• ∆γ is the curvature normal κn̂

• minimal curves are harmonic

(straight lines)

Essential Geometric Properties I

for a curve γ(u) = (x[u], y[u]) : R→ R2

• ∆γ = (∆x, ∆y) is gradient of arc length

• ∆γ is the curvature normal κn̂

• minimal curves are harmonic (straight lines)

Essential Geometric Properties II

for a surface r(u, v) = (x[u, v], y[u, v], z[u, v]) : R → R3

• ∆r = (∆x, ∆y, ∆z) is gradient of surface area

• ∆r is the mean curvature normal 2Hn̂

• minimal surfaces are harmonic!

Essential Geometric Properties II

for a surface r(u, v) = (x[u, v], y[u, v], z[u, v]) : R → R3

• ∆r = (∆x, ∆y, ∆z) is gradient of surface area

• ∆r is the mean curvature normal 2Hn̂

• minimal surfaces are harmonic!

Essential Geometric Properties II

for a surface r(u, v) = (x[u, v], y[u, v], z[u, v]) : R → R3

• ∆r = (∆x, ∆y, ∆z) is gradient of surface area

• ∆r is the mean curvature normal 2Hn̂

• minimal surfaces are harmonic!

Essential Geometric Properties III

• ∆ is intrinsic

• for Ω ⊂ R2, rigid motions of Ω don’t change ∆

• for a surface Ω, isometric deformations of Ω don’t change ∆

Essential Geometric Properties III

• ∆ is intrinsic

• for Ω ⊂ R2, rigid motions of Ω don’t change ∆

• for a surface Ω, isometric deformations of Ω don’t change ∆

Essential Geometric Properties III

• ∆ is intrinsic

• for Ω ⊂ R2, rigid motions of Ω don’t change ∆

• for a surface Ω, isometric deformations of Ω don’t change ∆

Laplacian Spectrum

• φ is a (Dirichlet) eigenfunction of ∆ on M w/ eigenvalue λ:

∆φ(x) = λφ(x), x ∈ M

0 = φ(x), x ∈ ∂M

1 =
∫

M
〈φ, φ〉 dA.

• recall intuition: ∆ as ∞-dim negative-semidefinite matrix

• expect orthogonal eigenfunctions with negative eigenvalue

• spectrum is discrete: countably many eigenfunctions,

0 ≥ λ1 ≥ λ2 ≥ λ3 . . .

Laplacian Spectrum

• φ is a (Dirichlet) eigenfunction of ∆ on M w/ eigenvalue λ:

∆φ(x) = λφ(x), x ∈ M

0 = φ(x), x ∈ ∂M

1 =
∫

M
〈φ, φ〉 dA.

• recall intuition: ∆ as ∞-dim negative-semidefinite matrix

• expect orthogonal eigenfunctions with negative eigenvalue

• spectrum is discrete: countably many eigenfunctions,

0 ≥ λ1 ≥ λ2 ≥ λ3 . . .

Laplacian Spectrum

• φ is a (Dirichlet) eigenfunction of ∆ on M w/ eigenvalue λ:

∆φ(x) = λφ(x), x ∈ M

0 = φ(x), x ∈ ∂M

1 =
∫

M
〈φ, φ〉 dA.

• recall intuition: ∆ as ∞-dim negative-semidefinite matrix

• expect orthogonal eigenfunctions with negative eigenvalue

• spectrum is discrete: countably many eigenfunctions,

0 ≥ λ1 ≥ λ2 ≥ λ3 . . .

Laplacian Spectrum

• φ is a (Dirichlet) eigenfunction of ∆ on M w/ eigenvalue λ:

∆φ(x) = λφ(x), x ∈ M

0 = φ(x), x ∈ ∂M

1 =
∫

M
〈φ, φ〉 dA.

• recall intuition: ∆ as ∞-dim negative-semidefinite matrix

• expect orthogonal eigenfunctions with negative eigenvalue

• spectrum is discrete: countably many eigenfunctions,

0 ≥ λ1 ≥ λ2 ≥ λ3 . . .

Laplacian Spectrum of Bunny

φ2

φ6

φ3

φ18

Laplacian Spectrum: Why do We Care?

• expand function f in eigenbasis:

f (x) = ∑
i

αiφi(x)

• Dirichlet energy of f :

E(f) =
∫

M
〈∇f ,∇f 〉 dA = −

∫
M

f ∆f dA = ∑
i

α2
i λi

Laplacian Spectrum: Why do We Care?

• expand function f in eigenbasis:

f (x) = ∑
i

αiφi(x)

• Dirichlet energy of f :

E(f) =
∫

M
〈∇f ,∇f 〉 dA = −

∫
M

f ∆f dA = ∑
i

α2
i λi

• large λi terms dominate

f (x) =
N

∑
i=1

αiφi(x)︸ ︷︷ ︸
low-frequency base

+
∞

∑
i=N+1

αiφi(x)︸ ︷︷ ︸
high-frequency detail

Laplacian Spectrum: Why do We Care?

10 modes 25 modes 50 modes

• large λi terms dominate

f (x) =
N

∑
i=1

αiφi(x)︸ ︷︷ ︸
low-frequency base

+
∞

∑
i=N+1

αiφi(x)︸ ︷︷ ︸
high-frequency detail

Laplacian Spectrum: Special Cases

perhaps you’ve heard of

• Fourier basis: M = Rn

• spherical harmonics: M = sphere

Laplacian spectrum generalizes these to any surface

Laplacian Spectrum: Special Cases

perhaps you’ve heard of

• Fourier basis: M = Rn

• spherical harmonics: M = sphere

Laplacian spectrum generalizes these to any surface

Laplacian Spectrum: Special Cases

perhaps you’ve heard of

• Fourier basis: M = Rn

• spherical harmonics: M = sphere

Laplacian spectrum generalizes these to any surface

DISCRETIZATION

Discrete Geometry

Triangle Meshes

• approximate surface by triangles

• “glued together” along edges

• many possible data structures

• half edge, quad edge, corner table, . . .

• for simplicity: vertex-face adjacency list

• (will be enough for our applications!)

Triangle Meshes

• approximate surface by triangles

• “glued together” along edges

• many possible data structures

• half edge, quad edge, corner table, . . .

• for simplicity: vertex-face adjacency list

• (will be enough for our applications!)

Triangle Meshes

• approximate surface by triangles

• “glued together” along edges

• many possible data structures

• half edge, quad edge, corner table, . . .

• for simplicity: vertex-face adjacency list

• (will be enough for our applications!)

Triangle Meshes

• approximate surface by triangles

• “glued together” along edges

• many possible data structures

• half edge, quad edge, corner table, . . .

• for simplicity: vertex-face adjacency list

• (will be enough for our applications!)

Triangle Meshes

• approximate surface by triangles

• “glued together” along edges

• many possible data structures

• half edge, quad edge, corner table, . . .

• for simplicity: vertex-face adjacency list

• (will be enough for our applications!)

Triangle Meshes

• approximate surface by triangles

• “glued together” along edges

• many possible data structures

• half edge, quad edge, corner table, . . .

• for simplicity: vertex-face adjacency list

• (will be enough for our applications!)

Vertex-Face Adjacency List—Example

xyz-coordinates of vertices
v 0 0 0
v 1 0 0
v .5 .866 0
v .5 -.866 0

vertex-face adjacency info
f 1 2 3
f 1 4 2

Manifold

Nonmanifold

Manifold Triangle Mesh

• manifold ⇐⇒ “locally disk-like”

• Which triangle meshes are manifold?

• Two triangles per edge (no “fins”)

• Every vertex looks like a “fan”

• Why? Simplicity.

• (Sometimes not necessary. . .)

Manifold Triangle Mesh

• manifold ⇐⇒ “locally disk-like”

• Which triangle meshes are manifold?

• Two triangles per edge (no “fins”)

• Every vertex looks like a “fan”

• Why? Simplicity.

• (Sometimes not necessary. . .)

Manifold Triangle Mesh

• manifold ⇐⇒ “locally disk-like”

• Which triangle meshes are manifold?

• Two triangles per edge (no “fins”)

• Every vertex looks like a “fan”

• Why? Simplicity.

• (Sometimes not necessary. . .)

Manifold Triangle Mesh

• manifold ⇐⇒ “locally disk-like”

• Which triangle meshes are manifold?

• Two triangles per edge (no “fins”)

• Every vertex looks like a “fan”

• Why? Simplicity.

• (Sometimes not necessary. . .)

Manifold Triangle Mesh

• manifold ⇐⇒ “locally disk-like”

• Which triangle meshes are manifold?

• Two triangles per edge (no “fins”)

• Every vertex looks like a “fan”

• Why? Simplicity.

• (Sometimes not necessary. . .)

Manifold Triangle Mesh

• manifold ⇐⇒ “locally disk-like”

• Which triangle meshes are manifold?

• Two triangles per edge (no “fins”)

• Every vertex looks like a “fan”

• Why? Simplicity.

• (Sometimes not necessary. . .)

Manifold Triangle Mesh

• manifold ⇐⇒ “locally disk-like”

• Which triangle meshes are manifold?

• Two triangles per edge (no “fins”)

• Every vertex looks like a “fan”

• Why? Simplicity.

• (Sometimes not necessary. . .)

The Cotangent Laplacian

(Assuming a manifold triangle mesh. . .)

(∆u)i ≈ 1
2Ai ∑j∈N (i)

(cot αij + cot βij)(ui − uj)

The set N (i) contains the immediate neighbors of vertex i
The quantity Ai is vertex area—for now: 1/3rd of triangle areas

The Cotangent Laplacian

(Assuming a manifold triangle mesh. . .)

(∆u)i ≈ 1
2Ai ∑j∈N (i)

(cot αij + cot βij)(ui − uj)

The set N (i) contains the immediate neighbors of vertex i

The quantity Ai is vertex area—for now: 1/3rd of triangle areas

The Cotangent Laplacian

(Assuming a manifold triangle mesh. . .)

(∆u)i ≈ 1
2Ai ∑j∈N (i)

(cot αij + cot βij)(ui − uj)

The set N (i) contains the immediate neighbors of vertex i
The quantity Ai is vertex area—for now: 1/3rd of triangle areas

Origin of the Cotan Formula?

• Many different ways to derive it

• piecewise linear finite elements (FEM)
• finite volumes
• discrete exterior calculus (DEC)
• . . .

• Re-derived in many different contexts:
• mean curvature flow [Desbrun et al., 1999]
• minimal surfaces [Pinkall and Polthier, 1993]
• electrical networks [Duffin, 1959]
• Poisson equation [MacNeal, 1949]
• (Courant? Frankel? Manhattan Project?)

• All these different viewpoints yield exact same cotan formula

• For three different derivations, see [Crane et al., 2013a]

Origin of the Cotan Formula?

• Many different ways to derive it
• piecewise linear finite elements (FEM)

• finite volumes
• discrete exterior calculus (DEC)
• . . .

• Re-derived in many different contexts:
• mean curvature flow [Desbrun et al., 1999]
• minimal surfaces [Pinkall and Polthier, 1993]
• electrical networks [Duffin, 1959]
• Poisson equation [MacNeal, 1949]
• (Courant? Frankel? Manhattan Project?)

• All these different viewpoints yield exact same cotan formula

• For three different derivations, see [Crane et al., 2013a]

Origin of the Cotan Formula?

• Many different ways to derive it
• piecewise linear finite elements (FEM)
• finite volumes

• discrete exterior calculus (DEC)
• . . .

• Re-derived in many different contexts:
• mean curvature flow [Desbrun et al., 1999]
• minimal surfaces [Pinkall and Polthier, 1993]
• electrical networks [Duffin, 1959]
• Poisson equation [MacNeal, 1949]
• (Courant? Frankel? Manhattan Project?)

• All these different viewpoints yield exact same cotan formula

• For three different derivations, see [Crane et al., 2013a]

Origin of the Cotan Formula?

• Many different ways to derive it
• piecewise linear finite elements (FEM)
• finite volumes
• discrete exterior calculus (DEC)

• . . .

• Re-derived in many different contexts:
• mean curvature flow [Desbrun et al., 1999]
• minimal surfaces [Pinkall and Polthier, 1993]
• electrical networks [Duffin, 1959]
• Poisson equation [MacNeal, 1949]
• (Courant? Frankel? Manhattan Project?)

• All these different viewpoints yield exact same cotan formula

• For three different derivations, see [Crane et al., 2013a]

Origin of the Cotan Formula?

• Many different ways to derive it
• piecewise linear finite elements (FEM)
• finite volumes
• discrete exterior calculus (DEC)
• . . .

• Re-derived in many different contexts:
• mean curvature flow [Desbrun et al., 1999]
• minimal surfaces [Pinkall and Polthier, 1993]
• electrical networks [Duffin, 1959]
• Poisson equation [MacNeal, 1949]
• (Courant? Frankel? Manhattan Project?)

• All these different viewpoints yield exact same cotan formula

• For three different derivations, see [Crane et al., 2013a]

Origin of the Cotan Formula?

• Many different ways to derive it
• piecewise linear finite elements (FEM)
• finite volumes
• discrete exterior calculus (DEC)
• . . .

• Re-derived in many different contexts:
• mean curvature flow [Desbrun et al., 1999]

• minimal surfaces [Pinkall and Polthier, 1993]
• electrical networks [Duffin, 1959]
• Poisson equation [MacNeal, 1949]
• (Courant? Frankel? Manhattan Project?)

• All these different viewpoints yield exact same cotan formula

• For three different derivations, see [Crane et al., 2013a]

Origin of the Cotan Formula?

• Many different ways to derive it
• piecewise linear finite elements (FEM)
• finite volumes
• discrete exterior calculus (DEC)
• . . .

• Re-derived in many different contexts:
• mean curvature flow [Desbrun et al., 1999]
• minimal surfaces [Pinkall and Polthier, 1993]

• electrical networks [Duffin, 1959]
• Poisson equation [MacNeal, 1949]
• (Courant? Frankel? Manhattan Project?)

• All these different viewpoints yield exact same cotan formula

• For three different derivations, see [Crane et al., 2013a]

Origin of the Cotan Formula?

• Many different ways to derive it
• piecewise linear finite elements (FEM)
• finite volumes
• discrete exterior calculus (DEC)
• . . .

• Re-derived in many different contexts:
• mean curvature flow [Desbrun et al., 1999]
• minimal surfaces [Pinkall and Polthier, 1993]
• electrical networks [Duffin, 1959]

• Poisson equation [MacNeal, 1949]
• (Courant? Frankel? Manhattan Project?)

• All these different viewpoints yield exact same cotan formula

• For three different derivations, see [Crane et al., 2013a]

Origin of the Cotan Formula?

• Many different ways to derive it
• piecewise linear finite elements (FEM)
• finite volumes
• discrete exterior calculus (DEC)
• . . .

• Re-derived in many different contexts:
• mean curvature flow [Desbrun et al., 1999]
• minimal surfaces [Pinkall and Polthier, 1993]
• electrical networks [Duffin, 1959]
• Poisson equation [MacNeal, 1949]

• (Courant? Frankel? Manhattan Project?)

• All these different viewpoints yield exact same cotan formula

• For three different derivations, see [Crane et al., 2013a]

Origin of the Cotan Formula?

• Many different ways to derive it
• piecewise linear finite elements (FEM)
• finite volumes
• discrete exterior calculus (DEC)
• . . .

• Re-derived in many different contexts:
• mean curvature flow [Desbrun et al., 1999]
• minimal surfaces [Pinkall and Polthier, 1993]
• electrical networks [Duffin, 1959]
• Poisson equation [MacNeal, 1949]
• (Courant? Frankel? Manhattan Project?)

• All these different viewpoints yield exact same cotan formula

• For three different derivations, see [Crane et al., 2013a]

Origin of the Cotan Formula?

• Many different ways to derive it
• piecewise linear finite elements (FEM)
• finite volumes
• discrete exterior calculus (DEC)
• . . .

• Re-derived in many different contexts:
• mean curvature flow [Desbrun et al., 1999]
• minimal surfaces [Pinkall and Polthier, 1993]
• electrical networks [Duffin, 1959]
• Poisson equation [MacNeal, 1949]
• (Courant? Frankel? Manhattan Project?)

• All these different viewpoints yield exact same cotan formula

• For three different derivations, see [Crane et al., 2013a]

Origin of the Cotan Formula?

• Many different ways to derive it
• piecewise linear finite elements (FEM)
• finite volumes
• discrete exterior calculus (DEC)
• . . .

• Re-derived in many different contexts:
• mean curvature flow [Desbrun et al., 1999]
• minimal surfaces [Pinkall and Polthier, 1993]
• electrical networks [Duffin, 1959]
• Poisson equation [MacNeal, 1949]
• (Courant? Frankel? Manhattan Project?)

• All these different viewpoints yield exact same cotan formula

• For three different derivations, see [Crane et al., 2013a]

MacNeal, 1949

Cotan-Laplacian via Finite Volumes

• Integrate over each dual cell Ci

•
∫

Ci
∆u =

∫
Ci

f (“weak”)

• Right-hand side approximated as Ai fi
• Left-hand side becomes

∫
Ci
∇ · ∇u =

∫
∂Ci

n · ∇u (Stokes’)

• Get piecewise integral over boundary ∑ej∈∂Ci

∫
ej

nj · ∇u

• After some trigonometry: 1
2 ∑j∈N (i)(cot αij + cot βij)(ui− uj)

• (Can divide by Ai to approximate pointwise value)

Cotan-Laplacian via Finite Volumes

• Integrate over each dual cell Ci

•
∫

Ci
∆u =

∫
Ci

f (“weak”)

• Right-hand side approximated as Ai fi
• Left-hand side becomes

∫
Ci
∇ · ∇u =

∫
∂Ci

n · ∇u (Stokes’)

• Get piecewise integral over boundary ∑ej∈∂Ci

∫
ej

nj · ∇u

• After some trigonometry: 1
2 ∑j∈N (i)(cot αij + cot βij)(ui− uj)

• (Can divide by Ai to approximate pointwise value)

Cotan-Laplacian via Finite Volumes

• Integrate over each dual cell Ci

•
∫

Ci
∆u =

∫
Ci

f (“weak”)

• Right-hand side approximated as Ai fi

• Left-hand side becomes
∫

Ci
∇ · ∇u =

∫
∂Ci

n · ∇u (Stokes’)

• Get piecewise integral over boundary ∑ej∈∂Ci

∫
ej

nj · ∇u

• After some trigonometry: 1
2 ∑j∈N (i)(cot αij + cot βij)(ui− uj)

• (Can divide by Ai to approximate pointwise value)

Cotan-Laplacian via Finite Volumes

• Integrate over each dual cell Ci

•
∫

Ci
∆u =

∫
Ci

f (“weak”)

• Right-hand side approximated as Ai fi
• Left-hand side becomes

∫
Ci
∇ · ∇u =

∫
∂Ci

n · ∇u (Stokes’)

• Get piecewise integral over boundary ∑ej∈∂Ci

∫
ej

nj · ∇u

• After some trigonometry: 1
2 ∑j∈N (i)(cot αij + cot βij)(ui− uj)

• (Can divide by Ai to approximate pointwise value)

Cotan-Laplacian via Finite Volumes

• Integrate over each dual cell Ci

•
∫

Ci
∆u =

∫
Ci

f (“weak”)

• Right-hand side approximated as Ai fi
• Left-hand side becomes

∫
Ci
∇ · ∇u =

∫
∂Ci

n · ∇u (Stokes’)

• Get piecewise integral over boundary ∑ej∈∂Ci

∫
ej

nj · ∇u

• After some trigonometry: 1
2 ∑j∈N (i)(cot αij + cot βij)(ui− uj)

• (Can divide by Ai to approximate pointwise value)

Cotan-Laplacian via Finite Volumes

• Integrate over each dual cell Ci

•
∫

Ci
∆u =

∫
Ci

f (“weak”)

• Right-hand side approximated as Ai fi
• Left-hand side becomes

∫
Ci
∇ · ∇u =

∫
∂Ci

n · ∇u (Stokes’)

• Get piecewise integral over boundary ∑ej∈∂Ci

∫
ej

nj · ∇u

• After some trigonometry: 1
2 ∑j∈N (i)(cot αij + cot βij)(ui− uj)

• (Can divide by Ai to approximate pointwise value)

Cotan-Laplacian via Finite Volumes

• Integrate over each dual cell Ci

•
∫

Ci
∆u =

∫
Ci

f (“weak”)

• Right-hand side approximated as Ai fi
• Left-hand side becomes

∫
Ci
∇ · ∇u =

∫
∂Ci

n · ∇u (Stokes’)

• Get piecewise integral over boundary ∑ej∈∂Ci

∫
ej

nj · ∇u

• After some trigonometry: 1
2 ∑j∈N (i)(cot αij + cot βij)(ui− uj)

• (Can divide by Ai to approximate pointwise value)

Triangle Quality—Rule of Thumb

good triangles bad triangles

(For further discussion see Shewchuk, “What Is a Good Linear Finite Element?”)

Triangle Quality—Delaunay Property

Delaunay Not Delaunay

Local Mesh Improvement

• Some simple ways to improve quality of Laplacian

• E.g., if α + β > π, “flip” the edge; after enough flips, mesh
will be Delaunay [Bobenko and Springborn, 2005]

• Other ways to improve mesh (edge collapse, edge split, . . .)

• Particular interest recently in interface tracking

• For more, see [Dunyach et al., 2013, Wojtan et al., 2011].

Local Mesh Improvement

• Some simple ways to improve quality of Laplacian

• E.g., if α + β > π, “flip” the edge; after enough flips, mesh
will be Delaunay [Bobenko and Springborn, 2005]

• Other ways to improve mesh (edge collapse, edge split, . . .)

• Particular interest recently in interface tracking

• For more, see [Dunyach et al., 2013, Wojtan et al., 2011].

Local Mesh Improvement

• Some simple ways to improve quality of Laplacian

• E.g., if α + β > π, “flip” the edge; after enough flips, mesh
will be Delaunay [Bobenko and Springborn, 2005]

• Other ways to improve mesh (edge collapse, edge split, . . .)

• Particular interest recently in interface tracking

• For more, see [Dunyach et al., 2013, Wojtan et al., 2011].

Local Mesh Improvement

• Some simple ways to improve quality of Laplacian

• E.g., if α + β > π, “flip” the edge; after enough flips, mesh
will be Delaunay [Bobenko and Springborn, 2005]

• Other ways to improve mesh (edge collapse, edge split, . . .)

• Particular interest recently in interface tracking

• For more, see [Dunyach et al., 2013, Wojtan et al., 2011].

Local Mesh Improvement

• Some simple ways to improve quality of Laplacian

• E.g., if α + β > π, “flip” the edge; after enough flips, mesh
will be Delaunay [Bobenko and Springborn, 2005]

• Other ways to improve mesh (edge collapse, edge split, . . .)

• Particular interest recently in interface tracking

• For more, see [Dunyach et al., 2013, Wojtan et al., 2011].

Meshes and Matrices

9

1011

12

1

2

3
4

6

7
8

5

(Laplace matrix, ignoring weights!)

• So far, Laplacian expressed as a sum:

• 1
2 ∑j∈N (i)(cot αij + cot βij)(uj − ui)

• For computation, encode using matrices

• First, give each vertex an index
1, . . . , |V|

• Weak Laplacian is matrix C ∈ R|V|×|V|

• Row i represents sum for ith vertex
• Cij =

1
2 cot αij + cot βij for j ∈ N (i)

• Cii = −∑j∈N (i) Cij

• All other entries are zero

• Use sparse matrices!

• (MATLAB: sparse, SuiteSparse:
cholmod_sparse, Eigen: SparseMatrix)

Meshes and Matrices

9

1011

12

1

2

3
4

6

7
8

5

(Laplace matrix, ignoring weights!)

• So far, Laplacian expressed as a sum:

• 1
2 ∑j∈N (i)(cot αij + cot βij)(uj − ui)

• For computation, encode using matrices

• First, give each vertex an index
1, . . . , |V|

• Weak Laplacian is matrix C ∈ R|V|×|V|

• Row i represents sum for ith vertex
• Cij =

1
2 cot αij + cot βij for j ∈ N (i)

• Cii = −∑j∈N (i) Cij

• All other entries are zero

• Use sparse matrices!

• (MATLAB: sparse, SuiteSparse:
cholmod_sparse, Eigen: SparseMatrix)

Meshes and Matrices

9

1011

12

1

2

3
4

6

7
8

5

(Laplace matrix, ignoring weights!)

• So far, Laplacian expressed as a sum:

• 1
2 ∑j∈N (i)(cot αij + cot βij)(uj − ui)

• For computation, encode using matrices

• First, give each vertex an index
1, . . . , |V|

• Weak Laplacian is matrix C ∈ R|V|×|V|

• Row i represents sum for ith vertex
• Cij =

1
2 cot αij + cot βij for j ∈ N (i)

• Cii = −∑j∈N (i) Cij

• All other entries are zero

• Use sparse matrices!

• (MATLAB: sparse, SuiteSparse:
cholmod_sparse, Eigen: SparseMatrix)

Meshes and Matrices

9

1011

12

1

2

3
4

6

7
8

5

(Laplace matrix, ignoring weights!)

• So far, Laplacian expressed as a sum:

• 1
2 ∑j∈N (i)(cot αij + cot βij)(uj − ui)

• For computation, encode using matrices

• First, give each vertex an index
1, . . . , |V|

• Weak Laplacian is matrix C ∈ R|V|×|V|

• Row i represents sum for ith vertex
• Cij =

1
2 cot αij + cot βij for j ∈ N (i)

• Cii = −∑j∈N (i) Cij

• All other entries are zero

• Use sparse matrices!

• (MATLAB: sparse, SuiteSparse:
cholmod_sparse, Eigen: SparseMatrix)

Meshes and Matrices

9

1011

12

1

2

3
4

6

7
8

5

(Laplace matrix, ignoring weights!)

• So far, Laplacian expressed as a sum:

• 1
2 ∑j∈N (i)(cot αij + cot βij)(uj − ui)

• For computation, encode using matrices

• First, give each vertex an index
1, . . . , |V|

• Weak Laplacian is matrix C ∈ R|V|×|V|

• Row i represents sum for ith vertex
• Cij =

1
2 cot αij + cot βij for j ∈ N (i)

• Cii = −∑j∈N (i) Cij

• All other entries are zero

• Use sparse matrices!

• (MATLAB: sparse, SuiteSparse:
cholmod_sparse, Eigen: SparseMatrix)

Meshes and Matrices

9

1011

12

1

2

3
4

6

7
8

5

(Laplace matrix, ignoring weights!)

• So far, Laplacian expressed as a sum:

• 1
2 ∑j∈N (i)(cot αij + cot βij)(uj − ui)

• For computation, encode using matrices

• First, give each vertex an index
1, . . . , |V|

• Weak Laplacian is matrix C ∈ R|V|×|V|

• Row i represents sum for ith vertex

• Cij =
1
2 cot αij + cot βij for j ∈ N (i)

• Cii = −∑j∈N (i) Cij

• All other entries are zero

• Use sparse matrices!

• (MATLAB: sparse, SuiteSparse:
cholmod_sparse, Eigen: SparseMatrix)

Meshes and Matrices

9

1011

12

1

2

3
4

6

7
8

5

(Laplace matrix, ignoring weights!)

• So far, Laplacian expressed as a sum:

• 1
2 ∑j∈N (i)(cot αij + cot βij)(uj − ui)

• For computation, encode using matrices

• First, give each vertex an index
1, . . . , |V|

• Weak Laplacian is matrix C ∈ R|V|×|V|

• Row i represents sum for ith vertex
• Cij =

1
2 cot αij + cot βij for j ∈ N (i)

• Cii = −∑j∈N (i) Cij

• All other entries are zero

• Use sparse matrices!

• (MATLAB: sparse, SuiteSparse:
cholmod_sparse, Eigen: SparseMatrix)

Meshes and Matrices

9

1011

12

1

2

3
4

6

7
8

5

(Laplace matrix, ignoring weights!)

• So far, Laplacian expressed as a sum:

• 1
2 ∑j∈N (i)(cot αij + cot βij)(uj − ui)

• For computation, encode using matrices

• First, give each vertex an index
1, . . . , |V|

• Weak Laplacian is matrix C ∈ R|V|×|V|

• Row i represents sum for ith vertex
• Cij =

1
2 cot αij + cot βij for j ∈ N (i)

• Cii = −∑j∈N (i) Cij

• All other entries are zero

• Use sparse matrices!

• (MATLAB: sparse, SuiteSparse:
cholmod_sparse, Eigen: SparseMatrix)

Meshes and Matrices

9

1011

12

1

2

3
4

6

7
8

5

(Laplace matrix, ignoring weights!)

• So far, Laplacian expressed as a sum:

• 1
2 ∑j∈N (i)(cot αij + cot βij)(uj − ui)

• For computation, encode using matrices

• First, give each vertex an index
1, . . . , |V|

• Weak Laplacian is matrix C ∈ R|V|×|V|

• Row i represents sum for ith vertex
• Cij =

1
2 cot αij + cot βij for j ∈ N (i)

• Cii = −∑j∈N (i) Cij

• All other entries are zero

• Use sparse matrices!

• (MATLAB: sparse, SuiteSparse:
cholmod_sparse, Eigen: SparseMatrix)

Meshes and Matrices

9

1011

12

1

2

3
4

6

7
8

5

(Laplace matrix, ignoring weights!)

• So far, Laplacian expressed as a sum:

• 1
2 ∑j∈N (i)(cot αij + cot βij)(uj − ui)

• For computation, encode using matrices

• First, give each vertex an index
1, . . . , |V|

• Weak Laplacian is matrix C ∈ R|V|×|V|

• Row i represents sum for ith vertex
• Cij =

1
2 cot αij + cot βij for j ∈ N (i)

• Cii = −∑j∈N (i) Cij

• All other entries are zero

• Use sparse matrices!

• (MATLAB: sparse, SuiteSparse:
cholmod_sparse, Eigen: SparseMatrix)

Meshes and Matrices

9

1011

12

1

2

3
4

6

7
8

5

(Laplace matrix, ignoring weights!)

• So far, Laplacian expressed as a sum:

• 1
2 ∑j∈N (i)(cot αij + cot βij)(uj − ui)

• For computation, encode using matrices

• First, give each vertex an index
1, . . . , |V|

• Weak Laplacian is matrix C ∈ R|V|×|V|

• Row i represents sum for ith vertex
• Cij =

1
2 cot αij + cot βij for j ∈ N (i)

• Cii = −∑j∈N (i) Cij

• All other entries are zero

• Use sparse matrices!

• (MATLAB: sparse, SuiteSparse:
cholmod_sparse, Eigen: SparseMatrix)

Mass Matrix

• Matrix C encodes only part of Laplacian—recall that

(∆u)i = 1
2Ai ∑j∈N (i)

(cot αij + cot βij)(uj − ui)

• Still need to incorporate vertex areas Ai

• For convenience, build diagonal mass matrix M ∈ R|V|×|V|:

M =

 A1
. . .
A|V|

• Entries are just Mii = Ai (all other entries are zero)

• Laplace operator is then L := M−1C

• Applying L to a column vector u ∈ R|V| “implements” the
cotan formula shown above

Mass Matrix

• Matrix C encodes only part of Laplacian—recall that

(∆u)i = 1
2Ai ∑j∈N (i)

(cot αij + cot βij)(uj − ui)

• Still need to incorporate vertex areas Ai

• For convenience, build diagonal mass matrix M ∈ R|V|×|V|:

M =

 A1
. . .
A|V|

• Entries are just Mii = Ai (all other entries are zero)

• Laplace operator is then L := M−1C

• Applying L to a column vector u ∈ R|V| “implements” the
cotan formula shown above

Mass Matrix

• Matrix C encodes only part of Laplacian—recall that

(∆u)i = 1
2Ai ∑j∈N (i)

(cot αij + cot βij)(uj − ui)

• Still need to incorporate vertex areas Ai

• For convenience, build diagonal mass matrix M ∈ R|V|×|V|:

M =

 A1
. . .
A|V|

• Entries are just Mii = Ai (all other entries are zero)

• Laplace operator is then L := M−1C

• Applying L to a column vector u ∈ R|V| “implements” the
cotan formula shown above

Mass Matrix

• Matrix C encodes only part of Laplacian—recall that

(∆u)i = 1
2Ai ∑j∈N (i)

(cot αij + cot βij)(uj − ui)

• Still need to incorporate vertex areas Ai

• For convenience, build diagonal mass matrix M ∈ R|V|×|V|:

M =

 A1
. . .
A|V|

• Entries are just Mii = Ai (all other entries are zero)

• Laplace operator is then L := M−1C

• Applying L to a column vector u ∈ R|V| “implements” the
cotan formula shown above

Mass Matrix

• Matrix C encodes only part of Laplacian—recall that

(∆u)i = 1
2Ai ∑j∈N (i)

(cot αij + cot βij)(uj − ui)

• Still need to incorporate vertex areas Ai

• For convenience, build diagonal mass matrix M ∈ R|V|×|V|:

M =

 A1
. . .
A|V|

• Entries are just Mii = Ai (all other entries are zero)

• Laplace operator is then L := M−1C

• Applying L to a column vector u ∈ R|V| “implements” the
cotan formula shown above

Mass Matrix

• Matrix C encodes only part of Laplacian—recall that

(∆u)i = 1
2Ai ∑j∈N (i)

(cot αij + cot βij)(uj − ui)

• Still need to incorporate vertex areas Ai

• For convenience, build diagonal mass matrix M ∈ R|V|×|V|:

M =

 A1
. . .
A|V|

• Entries are just Mii = Ai (all other entries are zero)

• Laplace operator is then L := M−1C

• Applying L to a column vector u ∈ R|V| “implements” the
cotan formula shown above

Discrete Poisson / Laplace Equation

• Poisson equation ∆u = f becomes linear algebra problem:

Lu = f

• Vector f ∈ R|V| is given data; u ∈ R|V| is unknown.

• Discrete approximation u approaches smooth solution u as
mesh is refined (for smooth data, “good” meshes. . .).

• Laplace is just Poisson with “zero” on right hand side!

Discrete Poisson / Laplace Equation

• Poisson equation ∆u = f becomes linear algebra problem:

Lu = f

• Vector f ∈ R|V| is given data; u ∈ R|V| is unknown.

• Discrete approximation u approaches smooth solution u as
mesh is refined (for smooth data, “good” meshes. . .).

• Laplace is just Poisson with “zero” on right hand side!

Discrete Poisson / Laplace Equation

• Poisson equation ∆u = f becomes linear algebra problem:

Lu = f

• Vector f ∈ R|V| is given data; u ∈ R|V| is unknown.

• Discrete approximation u approaches smooth solution u as
mesh is refined (for smooth data, “good” meshes. . .).

• Laplace is just Poisson with “zero” on right hand side!

Discrete Poisson / Laplace Equation

• Poisson equation ∆u = f becomes linear algebra problem:

Lu = f

• Vector f ∈ R|V| is given data; u ∈ R|V| is unknown.

• Discrete approximation u approaches smooth solution u as
mesh is refined (for smooth data, “good” meshes. . .).

• Laplace is just Poisson with “zero” on right hand side!

Discrete Heat Equation

• Heat equation du
dt = ∆u must also be discretized in time

• Replace time derivative with finite difference:

du
dt
⇒ uk+1 − uk

h
, h > 0︸ ︷︷ ︸

“time step”

• How (or really, “when”) do we approximate ∆u?

• Explicit: (uk+1 − uk)/h = Luk (cheaper to compute)

• Implicit: (uk+1 − uk)/h = Luk+1 (more stable)

• Implicit update becomes linear system (I− hL)uk+1 = uk

Discrete Heat Equation

• Heat equation du
dt = ∆u must also be discretized in time

• Replace time derivative with finite difference:

du
dt
⇒ uk+1 − uk

h
, h > 0︸ ︷︷ ︸

“time step”

• How (or really, “when”) do we approximate ∆u?

• Explicit: (uk+1 − uk)/h = Luk (cheaper to compute)

• Implicit: (uk+1 − uk)/h = Luk+1 (more stable)

• Implicit update becomes linear system (I− hL)uk+1 = uk

Discrete Heat Equation

• Heat equation du
dt = ∆u must also be discretized in time

• Replace time derivative with finite difference:

du
dt
⇒ uk+1 − uk

h
, h > 0︸ ︷︷ ︸

“time step”

• How (or really, “when”) do we approximate ∆u?

• Explicit: (uk+1 − uk)/h = Luk (cheaper to compute)

• Implicit: (uk+1 − uk)/h = Luk+1 (more stable)

• Implicit update becomes linear system (I− hL)uk+1 = uk

Discrete Heat Equation

• Heat equation du
dt = ∆u must also be discretized in time

• Replace time derivative with finite difference:

du
dt
⇒ uk+1 − uk

h
, h > 0︸ ︷︷ ︸

“time step”

• How (or really, “when”) do we approximate ∆u?

• Explicit: (uk+1 − uk)/h = Luk (cheaper to compute)

• Implicit: (uk+1 − uk)/h = Luk+1 (more stable)

• Implicit update becomes linear system (I− hL)uk+1 = uk

Discrete Heat Equation

• Heat equation du
dt = ∆u must also be discretized in time

• Replace time derivative with finite difference:

du
dt
⇒ uk+1 − uk

h
, h > 0︸ ︷︷ ︸

“time step”

• How (or really, “when”) do we approximate ∆u?

• Explicit: (uk+1 − uk)/h = Luk (cheaper to compute)

• Implicit: (uk+1 − uk)/h = Luk+1 (more stable)

• Implicit update becomes linear system (I− hL)uk+1 = uk

Discrete Heat Equation

• Heat equation du
dt = ∆u must also be discretized in time

• Replace time derivative with finite difference:

du
dt
⇒ uk+1 − uk

h
, h > 0︸ ︷︷ ︸

“time step”

• How (or really, “when”) do we approximate ∆u?

• Explicit: (uk+1 − uk)/h = Luk (cheaper to compute)

• Implicit: (uk+1 − uk)/h = Luk+1 (more stable)

• Implicit update becomes linear system (I− hL)uk+1 = uk

Discrete Eigenvalue Problem

• Smallest eigenvalue problem ∆u = λu becomes

Lu = λu

for smallest nonzero eigenvalue λ.

• Can be solved using (inverse) power method:
• Pick random u0
• Until convergence:

• Solve Luk+1 = uk
• Remove mean value from uk+1
• uk+1 ← uk+1/|uk+1|

• By prefactoring L, overall cost is nearly identical to solving
a single Poisson equation!

Discrete Eigenvalue Problem

• Smallest eigenvalue problem ∆u = λu becomes

Lu = λu

for smallest nonzero eigenvalue λ.
• Can be solved using (inverse) power method:

• Pick random u0
• Until convergence:

• Solve Luk+1 = uk
• Remove mean value from uk+1
• uk+1 ← uk+1/|uk+1|

• By prefactoring L, overall cost is nearly identical to solving
a single Poisson equation!

Discrete Eigenvalue Problem

• Smallest eigenvalue problem ∆u = λu becomes

Lu = λu

for smallest nonzero eigenvalue λ.
• Can be solved using (inverse) power method:

• Pick random u0
• Until convergence:

• Solve Luk+1 = uk
• Remove mean value from uk+1
• uk+1 ← uk+1/|uk+1|

• By prefactoring L, overall cost is nearly identical to solving
a single Poisson equation!

Properties of cotan-Laplace

• Always, always, always positive-semidefinite fTCf ≥ 0
(even if cotan weights are negative!)

• Why? fTCf is identical to summing ||∇f ||2!
• No boundary⇒ constant vector in the kernel / cokernel
• Why does it matter? E.g., for Poisson equation:

• solution is unique only up to constant shift
• if RHS has nonzero mean, cannot be solved!

• Exhibits maximum principle on Delaunay mesh
• Delaunay: triangle circumcircles are empty
• Maximum principle: solution to Laplace equation has no

interior extrema (local max or min)
• NOTE: non-Delaunay meshes can also exhibit max

principle! (And often do.) Delaunay sufficient but not
necessary. Currently no nice, simple necessary condition on
mesh geometry.

• For more, see [Wardetzky et al., 2007]

Properties of cotan-Laplace

• Always, always, always positive-semidefinite fTCf ≥ 0
(even if cotan weights are negative!)

• Why? fTCf is identical to summing ||∇f ||2!

• No boundary⇒ constant vector in the kernel / cokernel
• Why does it matter? E.g., for Poisson equation:

• solution is unique only up to constant shift
• if RHS has nonzero mean, cannot be solved!

• Exhibits maximum principle on Delaunay mesh
• Delaunay: triangle circumcircles are empty
• Maximum principle: solution to Laplace equation has no

interior extrema (local max or min)
• NOTE: non-Delaunay meshes can also exhibit max

principle! (And often do.) Delaunay sufficient but not
necessary. Currently no nice, simple necessary condition on
mesh geometry.

• For more, see [Wardetzky et al., 2007]

Properties of cotan-Laplace

• Always, always, always positive-semidefinite fTCf ≥ 0
(even if cotan weights are negative!)

• Why? fTCf is identical to summing ||∇f ||2!
• No boundary⇒ constant vector in the kernel / cokernel

• Why does it matter? E.g., for Poisson equation:
• solution is unique only up to constant shift
• if RHS has nonzero mean, cannot be solved!

• Exhibits maximum principle on Delaunay mesh
• Delaunay: triangle circumcircles are empty
• Maximum principle: solution to Laplace equation has no

interior extrema (local max or min)
• NOTE: non-Delaunay meshes can also exhibit max

principle! (And often do.) Delaunay sufficient but not
necessary. Currently no nice, simple necessary condition on
mesh geometry.

• For more, see [Wardetzky et al., 2007]

Properties of cotan-Laplace

• Always, always, always positive-semidefinite fTCf ≥ 0
(even if cotan weights are negative!)

• Why? fTCf is identical to summing ||∇f ||2!
• No boundary⇒ constant vector in the kernel / cokernel
• Why does it matter? E.g., for Poisson equation:

• solution is unique only up to constant shift
• if RHS has nonzero mean, cannot be solved!

• Exhibits maximum principle on Delaunay mesh
• Delaunay: triangle circumcircles are empty
• Maximum principle: solution to Laplace equation has no

interior extrema (local max or min)
• NOTE: non-Delaunay meshes can also exhibit max

principle! (And often do.) Delaunay sufficient but not
necessary. Currently no nice, simple necessary condition on
mesh geometry.

• For more, see [Wardetzky et al., 2007]

Properties of cotan-Laplace

• Always, always, always positive-semidefinite fTCf ≥ 0
(even if cotan weights are negative!)

• Why? fTCf is identical to summing ||∇f ||2!
• No boundary⇒ constant vector in the kernel / cokernel
• Why does it matter? E.g., for Poisson equation:

• solution is unique only up to constant shift

• if RHS has nonzero mean, cannot be solved!
• Exhibits maximum principle on Delaunay mesh

• Delaunay: triangle circumcircles are empty
• Maximum principle: solution to Laplace equation has no

interior extrema (local max or min)
• NOTE: non-Delaunay meshes can also exhibit max

principle! (And often do.) Delaunay sufficient but not
necessary. Currently no nice, simple necessary condition on
mesh geometry.

• For more, see [Wardetzky et al., 2007]

Properties of cotan-Laplace

• Always, always, always positive-semidefinite fTCf ≥ 0
(even if cotan weights are negative!)

• Why? fTCf is identical to summing ||∇f ||2!
• No boundary⇒ constant vector in the kernel / cokernel
• Why does it matter? E.g., for Poisson equation:

• solution is unique only up to constant shift
• if RHS has nonzero mean, cannot be solved!

• Exhibits maximum principle on Delaunay mesh
• Delaunay: triangle circumcircles are empty
• Maximum principle: solution to Laplace equation has no

interior extrema (local max or min)
• NOTE: non-Delaunay meshes can also exhibit max

principle! (And often do.) Delaunay sufficient but not
necessary. Currently no nice, simple necessary condition on
mesh geometry.

• For more, see [Wardetzky et al., 2007]

Properties of cotan-Laplace

• Always, always, always positive-semidefinite fTCf ≥ 0
(even if cotan weights are negative!)

• Why? fTCf is identical to summing ||∇f ||2!
• No boundary⇒ constant vector in the kernel / cokernel
• Why does it matter? E.g., for Poisson equation:

• solution is unique only up to constant shift
• if RHS has nonzero mean, cannot be solved!

• Exhibits maximum principle on Delaunay mesh

• Delaunay: triangle circumcircles are empty
• Maximum principle: solution to Laplace equation has no

interior extrema (local max or min)
• NOTE: non-Delaunay meshes can also exhibit max

principle! (And often do.) Delaunay sufficient but not
necessary. Currently no nice, simple necessary condition on
mesh geometry.

• For more, see [Wardetzky et al., 2007]

Properties of cotan-Laplace

• Always, always, always positive-semidefinite fTCf ≥ 0
(even if cotan weights are negative!)

• Why? fTCf is identical to summing ||∇f ||2!
• No boundary⇒ constant vector in the kernel / cokernel
• Why does it matter? E.g., for Poisson equation:

• solution is unique only up to constant shift
• if RHS has nonzero mean, cannot be solved!

• Exhibits maximum principle on Delaunay mesh
• Delaunay: triangle circumcircles are empty

• Maximum principle: solution to Laplace equation has no
interior extrema (local max or min)

• NOTE: non-Delaunay meshes can also exhibit max
principle! (And often do.) Delaunay sufficient but not
necessary. Currently no nice, simple necessary condition on
mesh geometry.

• For more, see [Wardetzky et al., 2007]

Properties of cotan-Laplace

• Always, always, always positive-semidefinite fTCf ≥ 0
(even if cotan weights are negative!)

• Why? fTCf is identical to summing ||∇f ||2!
• No boundary⇒ constant vector in the kernel / cokernel
• Why does it matter? E.g., for Poisson equation:

• solution is unique only up to constant shift
• if RHS has nonzero mean, cannot be solved!

• Exhibits maximum principle on Delaunay mesh
• Delaunay: triangle circumcircles are empty
• Maximum principle: solution to Laplace equation has no

interior extrema (local max or min)

• NOTE: non-Delaunay meshes can also exhibit max
principle! (And often do.) Delaunay sufficient but not
necessary. Currently no nice, simple necessary condition on
mesh geometry.

• For more, see [Wardetzky et al., 2007]

Properties of cotan-Laplace

• Always, always, always positive-semidefinite fTCf ≥ 0
(even if cotan weights are negative!)

• Why? fTCf is identical to summing ||∇f ||2!
• No boundary⇒ constant vector in the kernel / cokernel
• Why does it matter? E.g., for Poisson equation:

• solution is unique only up to constant shift
• if RHS has nonzero mean, cannot be solved!

• Exhibits maximum principle on Delaunay mesh
• Delaunay: triangle circumcircles are empty
• Maximum principle: solution to Laplace equation has no

interior extrema (local max or min)
• NOTE: non-Delaunay meshes can also exhibit max

principle! (And often do.) Delaunay sufficient but not
necessary. Currently no nice, simple necessary condition on
mesh geometry.

• For more, see [Wardetzky et al., 2007]

Properties of cotan-Laplace

• Always, always, always positive-semidefinite fTCf ≥ 0
(even if cotan weights are negative!)

• Why? fTCf is identical to summing ||∇f ||2!
• No boundary⇒ constant vector in the kernel / cokernel
• Why does it matter? E.g., for Poisson equation:

• solution is unique only up to constant shift
• if RHS has nonzero mean, cannot be solved!

• Exhibits maximum principle on Delaunay mesh
• Delaunay: triangle circumcircles are empty
• Maximum principle: solution to Laplace equation has no

interior extrema (local max or min)
• NOTE: non-Delaunay meshes can also exhibit max

principle! (And often do.) Delaunay sufficient but not
necessary. Currently no nice, simple necessary condition on
mesh geometry.

• For more, see [Wardetzky et al., 2007]

Numerical Issues—Symmetry

• “Best” case for sparse linear systems:

symmetric positive-(semi)definite (AT= A, xTAx ≥ 0 ∀x)

• Many good solvers (Cholesky, conjugate gradient, . . .)

• Discrete Poisson equation looks like M−1Cu = f

• C is symmetric, but M−1C is not!

• Can easily be made symmetric:

Cu = Mf

• In other words: just multiply by vertex areas!

• Seemingly superficial change. . .

• . . . but makes computation simpler / more efficient

Numerical Issues—Symmetry

• “Best” case for sparse linear systems:

symmetric positive-(semi)definite (AT= A, xTAx ≥ 0 ∀x)

• Many good solvers (Cholesky, conjugate gradient, . . .)

• Discrete Poisson equation looks like M−1Cu = f

• C is symmetric, but M−1C is not!

• Can easily be made symmetric:

Cu = Mf

• In other words: just multiply by vertex areas!

• Seemingly superficial change. . .

• . . . but makes computation simpler / more efficient

Numerical Issues—Symmetry

• “Best” case for sparse linear systems:

symmetric positive-(semi)definite (AT= A, xTAx ≥ 0 ∀x)

• Many good solvers (Cholesky, conjugate gradient, . . .)

• Discrete Poisson equation looks like M−1Cu = f

• C is symmetric, but M−1C is not!

• Can easily be made symmetric:

Cu = Mf

• In other words: just multiply by vertex areas!

• Seemingly superficial change. . .

• . . . but makes computation simpler / more efficient

Numerical Issues—Symmetry

• “Best” case for sparse linear systems:

symmetric positive-(semi)definite (AT= A, xTAx ≥ 0 ∀x)

• Many good solvers (Cholesky, conjugate gradient, . . .)

• Discrete Poisson equation looks like M−1Cu = f

• C is symmetric, but M−1C is not!

• Can easily be made symmetric:

Cu = Mf

• In other words: just multiply by vertex areas!

• Seemingly superficial change. . .

• . . . but makes computation simpler / more efficient

Numerical Issues—Symmetry

• “Best” case for sparse linear systems:

symmetric positive-(semi)definite (AT= A, xTAx ≥ 0 ∀x)

• Many good solvers (Cholesky, conjugate gradient, . . .)

• Discrete Poisson equation looks like M−1Cu = f

• C is symmetric, but M−1C is not!

• Can easily be made symmetric:

Cu = Mf

• In other words: just multiply by vertex areas!

• Seemingly superficial change. . .

• . . . but makes computation simpler / more efficient

Numerical Issues—Symmetry

• “Best” case for sparse linear systems:

symmetric positive-(semi)definite (AT= A, xTAx ≥ 0 ∀x)

• Many good solvers (Cholesky, conjugate gradient, . . .)

• Discrete Poisson equation looks like M−1Cu = f

• C is symmetric, but M−1C is not!

• Can easily be made symmetric:

Cu = Mf

• In other words: just multiply by vertex areas!

• Seemingly superficial change. . .

• . . . but makes computation simpler / more efficient

Numerical Issues—Symmetry

• “Best” case for sparse linear systems:

symmetric positive-(semi)definite (AT= A, xTAx ≥ 0 ∀x)

• Many good solvers (Cholesky, conjugate gradient, . . .)

• Discrete Poisson equation looks like M−1Cu = f

• C is symmetric, but M−1C is not!

• Can easily be made symmetric:

Cu = Mf

• In other words: just multiply by vertex areas!

• Seemingly superficial change. . .

• . . . but makes computation simpler / more efficient

Numerical Issues—Symmetry

• “Best” case for sparse linear systems:

symmetric positive-(semi)definite (AT= A, xTAx ≥ 0 ∀x)

• Many good solvers (Cholesky, conjugate gradient, . . .)

• Discrete Poisson equation looks like M−1Cu = f

• C is symmetric, but M−1C is not!

• Can easily be made symmetric:

Cu = Mf

• In other words: just multiply by vertex areas!

• Seemingly superficial change. . .

• . . . but makes computation simpler / more efficient

Numerical Issues—Symmetry, continued

• Can also make heat equation symmetric

• Instead of (I− hL)uk+1 = uk, use

(M− hC)uk+1 = Muk

• What about smallest eigenvalue problem Lu = λu?
• Two options:

1 Solve generalized eigenvalue problem Cu = λMu
2 Solve M−1/2CM−1/2ũ = λũ, recover u = M−1/2ũ

• Note: M−1/2 just means “put 1/
√
Ai on the diagonal!”

Numerical Issues—Symmetry, continued

• Can also make heat equation symmetric

• Instead of (I− hL)uk+1 = uk, use

(M− hC)uk+1 = Muk

• What about smallest eigenvalue problem Lu = λu?
• Two options:

1 Solve generalized eigenvalue problem Cu = λMu
2 Solve M−1/2CM−1/2ũ = λũ, recover u = M−1/2ũ

• Note: M−1/2 just means “put 1/
√
Ai on the diagonal!”

Numerical Issues—Symmetry, continued

• Can also make heat equation symmetric

• Instead of (I− hL)uk+1 = uk, use

(M− hC)uk+1 = Muk

• What about smallest eigenvalue problem Lu = λu?

• Two options:
1 Solve generalized eigenvalue problem Cu = λMu
2 Solve M−1/2CM−1/2ũ = λũ, recover u = M−1/2ũ

• Note: M−1/2 just means “put 1/
√
Ai on the diagonal!”

Numerical Issues—Symmetry, continued

• Can also make heat equation symmetric

• Instead of (I− hL)uk+1 = uk, use

(M− hC)uk+1 = Muk

• What about smallest eigenvalue problem Lu = λu?
• Two options:

1 Solve generalized eigenvalue problem Cu = λMu
2 Solve M−1/2CM−1/2ũ = λũ, recover u = M−1/2ũ

• Note: M−1/2 just means “put 1/
√
Ai on the diagonal!”

Numerical Issues—Symmetry, continued

• Can also make heat equation symmetric

• Instead of (I− hL)uk+1 = uk, use

(M− hC)uk+1 = Muk

• What about smallest eigenvalue problem Lu = λu?
• Two options:

1 Solve generalized eigenvalue problem Cu = λMu

2 Solve M−1/2CM−1/2ũ = λũ, recover u = M−1/2ũ

• Note: M−1/2 just means “put 1/
√
Ai on the diagonal!”

Numerical Issues—Symmetry, continued

• Can also make heat equation symmetric

• Instead of (I− hL)uk+1 = uk, use

(M− hC)uk+1 = Muk

• What about smallest eigenvalue problem Lu = λu?
• Two options:

1 Solve generalized eigenvalue problem Cu = λMu
2 Solve M−1/2CM−1/2ũ = λũ, recover u = M−1/2ũ

• Note: M−1/2 just means “put 1/
√
Ai on the diagonal!”

Numerical Issues—Symmetry, continued

• Can also make heat equation symmetric

• Instead of (I− hL)uk+1 = uk, use

(M− hC)uk+1 = Muk

• What about smallest eigenvalue problem Lu = λu?
• Two options:

1 Solve generalized eigenvalue problem Cu = λMu
2 Solve M−1/2CM−1/2ũ = λũ, recover u = M−1/2ũ

• Note: M−1/2 just means “put 1/
√
Ai on the diagonal!”

Numerical Issues—Symmetry, continued

• Can also make heat equation symmetric

• Instead of (I− hL)uk+1 = uk, use

(M− hC)uk+1 = Muk

• What about smallest eigenvalue problem Lu = λu?
• Two options:

1 Solve generalized eigenvalue problem Cu = λMu
2 Solve M−1/2CM−1/2ũ = λũ, recover u = M−1/2ũ

• Note: M−1/2 just means “put 1/
√
Ai on the diagonal!”

Numerical Issues—Direct vs. Iterative Solvers

• Direct (e.g., LLT, LU, QR, . . .)

• pros: great for multiple right-hand sides; (can be) less
sensitive to numerical instability; solve many types of
problems, under/overdetermined systems.

• cons: prohibitively expensive for large problems; factors
are quite dense for 3D (volumetric) problems

• Iterative (e.g., conjugate gradient, multigrid, . . .)
• pros: can handle very large problems; can be implemented

via callback (instead of matrix); asymptotic running times
approaching linear time (in theory. . .)

• cons: poor performance without good preconditioners; less
benefit for multiple right-hand sides; best-in-class methods
may handle only symmetric positive-(semi)definite systems

• No perfect solution! Each problem is different.

Numerical Issues—Direct vs. Iterative Solvers

• Direct (e.g., LLT, LU, QR, . . .)
• pros: great for multiple right-hand sides; (can be) less

sensitive to numerical instability; solve many types of
problems, under/overdetermined systems.

• cons: prohibitively expensive for large problems; factors
are quite dense for 3D (volumetric) problems

• Iterative (e.g., conjugate gradient, multigrid, . . .)
• pros: can handle very large problems; can be implemented

via callback (instead of matrix); asymptotic running times
approaching linear time (in theory. . .)

• cons: poor performance without good preconditioners; less
benefit for multiple right-hand sides; best-in-class methods
may handle only symmetric positive-(semi)definite systems

• No perfect solution! Each problem is different.

Numerical Issues—Direct vs. Iterative Solvers

• Direct (e.g., LLT, LU, QR, . . .)
• pros: great for multiple right-hand sides; (can be) less

sensitive to numerical instability; solve many types of
problems, under/overdetermined systems.

• cons: prohibitively expensive for large problems; factors
are quite dense for 3D (volumetric) problems

• Iterative (e.g., conjugate gradient, multigrid, . . .)
• pros: can handle very large problems; can be implemented

via callback (instead of matrix); asymptotic running times
approaching linear time (in theory. . .)

• cons: poor performance without good preconditioners; less
benefit for multiple right-hand sides; best-in-class methods
may handle only symmetric positive-(semi)definite systems

• No perfect solution! Each problem is different.

Numerical Issues—Direct vs. Iterative Solvers

• Direct (e.g., LLT, LU, QR, . . .)
• pros: great for multiple right-hand sides; (can be) less

sensitive to numerical instability; solve many types of
problems, under/overdetermined systems.

• cons: prohibitively expensive for large problems; factors
are quite dense for 3D (volumetric) problems

• Iterative (e.g., conjugate gradient, multigrid, . . .)

• pros: can handle very large problems; can be implemented
via callback (instead of matrix); asymptotic running times
approaching linear time (in theory. . .)

• cons: poor performance without good preconditioners; less
benefit for multiple right-hand sides; best-in-class methods
may handle only symmetric positive-(semi)definite systems

• No perfect solution! Each problem is different.

Numerical Issues—Direct vs. Iterative Solvers

• Direct (e.g., LLT, LU, QR, . . .)
• pros: great for multiple right-hand sides; (can be) less

sensitive to numerical instability; solve many types of
problems, under/overdetermined systems.

• cons: prohibitively expensive for large problems; factors
are quite dense for 3D (volumetric) problems

• Iterative (e.g., conjugate gradient, multigrid, . . .)
• pros: can handle very large problems; can be implemented

via callback (instead of matrix); asymptotic running times
approaching linear time (in theory. . .)

• cons: poor performance without good preconditioners; less
benefit for multiple right-hand sides; best-in-class methods
may handle only symmetric positive-(semi)definite systems

• No perfect solution! Each problem is different.

Numerical Issues—Direct vs. Iterative Solvers

• Direct (e.g., LLT, LU, QR, . . .)
• pros: great for multiple right-hand sides; (can be) less

sensitive to numerical instability; solve many types of
problems, under/overdetermined systems.

• cons: prohibitively expensive for large problems; factors
are quite dense for 3D (volumetric) problems

• Iterative (e.g., conjugate gradient, multigrid, . . .)
• pros: can handle very large problems; can be implemented

via callback (instead of matrix); asymptotic running times
approaching linear time (in theory. . .)

• cons: poor performance without good preconditioners; less
benefit for multiple right-hand sides; best-in-class methods
may handle only symmetric positive-(semi)definite systems

• No perfect solution! Each problem is different.

Numerical Issues—Direct vs. Iterative Solvers

• Direct (e.g., LLT, LU, QR, . . .)
• pros: great for multiple right-hand sides; (can be) less

sensitive to numerical instability; solve many types of
problems, under/overdetermined systems.

• cons: prohibitively expensive for large problems; factors
are quite dense for 3D (volumetric) problems

• Iterative (e.g., conjugate gradient, multigrid, . . .)
• pros: can handle very large problems; can be implemented

via callback (instead of matrix); asymptotic running times
approaching linear time (in theory. . .)

• cons: poor performance without good preconditioners; less
benefit for multiple right-hand sides; best-in-class methods
may handle only symmetric positive-(semi)definite systems

• No perfect solution! Each problem is different.

Solving Equations in Linear Time

• Is solving Poisson, Laplace, etc., truly linear time in 2D?

• Jury is still out, but keep inching forward:
• [Vaidya, 1991]—use spanning tree as preconditioner
• [Alon et al., 1995]—use low-stretch spanning trees
• [Spielman and Teng, 2004]—first “nearly linear time” solver
• [Krishnan et al., 2013]—practical solver for graphics
• Lots of recent activity in both preconditioners and direct

solvers (e.g., [Koutis et al., 2011],
[Gillman and Martinsson, 2013])

• Best theoretical results may lack practical implementations!

• Older codes benefit from extensive low-level optimization

• Long term: probably indistinguishable from O(n)

Solving Equations in Linear Time

• Is solving Poisson, Laplace, etc., truly linear time in 2D?
• Jury is still out, but keep inching forward:

• [Vaidya, 1991]—use spanning tree as preconditioner
• [Alon et al., 1995]—use low-stretch spanning trees
• [Spielman and Teng, 2004]—first “nearly linear time” solver
• [Krishnan et al., 2013]—practical solver for graphics
• Lots of recent activity in both preconditioners and direct

solvers (e.g., [Koutis et al., 2011],
[Gillman and Martinsson, 2013])

• Best theoretical results may lack practical implementations!

• Older codes benefit from extensive low-level optimization

• Long term: probably indistinguishable from O(n)

Solving Equations in Linear Time

• Is solving Poisson, Laplace, etc., truly linear time in 2D?
• Jury is still out, but keep inching forward:

• [Vaidya, 1991]—use spanning tree as preconditioner
• [Alon et al., 1995]—use low-stretch spanning trees
• [Spielman and Teng, 2004]—first “nearly linear time” solver
• [Krishnan et al., 2013]—practical solver for graphics
• Lots of recent activity in both preconditioners and direct

solvers (e.g., [Koutis et al., 2011],
[Gillman and Martinsson, 2013])

• Best theoretical results may lack practical implementations!

• Older codes benefit from extensive low-level optimization

• Long term: probably indistinguishable from O(n)

Solving Equations in Linear Time

• Is solving Poisson, Laplace, etc., truly linear time in 2D?
• Jury is still out, but keep inching forward:

• [Vaidya, 1991]—use spanning tree as preconditioner
• [Alon et al., 1995]—use low-stretch spanning trees
• [Spielman and Teng, 2004]—first “nearly linear time” solver
• [Krishnan et al., 2013]—practical solver for graphics
• Lots of recent activity in both preconditioners and direct

solvers (e.g., [Koutis et al., 2011],
[Gillman and Martinsson, 2013])

• Best theoretical results may lack practical implementations!

• Older codes benefit from extensive low-level optimization

• Long term: probably indistinguishable from O(n)

Solving Equations in Linear Time

• Is solving Poisson, Laplace, etc., truly linear time in 2D?
• Jury is still out, but keep inching forward:

• [Vaidya, 1991]—use spanning tree as preconditioner
• [Alon et al., 1995]—use low-stretch spanning trees
• [Spielman and Teng, 2004]—first “nearly linear time” solver
• [Krishnan et al., 2013]—practical solver for graphics
• Lots of recent activity in both preconditioners and direct

solvers (e.g., [Koutis et al., 2011],
[Gillman and Martinsson, 2013])

• Best theoretical results may lack practical implementations!

• Older codes benefit from extensive low-level optimization

• Long term: probably indistinguishable from O(n)

Boundary Conditions

• PDE (Laplace, Poisson, heat equation, etc.) determines
behavior “inside” domain Ω

• Also need to say how solution behaves on boundary ∂Ω

• Often trickiest part (both mathematically & numerically)

• Very easy to get wrong!

Boundary Conditions

• PDE (Laplace, Poisson, heat equation, etc.) determines
behavior “inside” domain Ω

• Also need to say how solution behaves on boundary ∂Ω

• Often trickiest part (both mathematically & numerically)

• Very easy to get wrong!

Boundary Conditions

• PDE (Laplace, Poisson, heat equation, etc.) determines
behavior “inside” domain Ω

• Also need to say how solution behaves on boundary ∂Ω

• Often trickiest part (both mathematically & numerically)

• Very easy to get wrong!

Boundary Conditions

• PDE (Laplace, Poisson, heat equation, etc.) determines
behavior “inside” domain Ω

• Also need to say how solution behaves on boundary ∂Ω

• Often trickiest part (both mathematically & numerically)

• Very easy to get wrong!

Dirichlet Boundary Conditions

• “Dirichlet” ⇐⇒ prescribe values

• E.g., φ(0) = a, φ(1) = b

• (Many possible functions “in between!”)

Dirichlet Boundary Conditions

• “Dirichlet” ⇐⇒ prescribe values

• E.g., φ(0) = a, φ(1) = b

• (Many possible functions “in between!”)

Dirichlet Boundary Conditions

• “Dirichlet” ⇐⇒ prescribe values

• E.g., φ(0) = a, φ(1) = b

• (Many possible functions “in between!”)

Neumann Boundary Conditions

• “Neumann” ⇐⇒ prescribe derivatives

• E.g., φ′(0) = u, φ′(1) = v

• (Again, many possible solutions.)

Neumann Boundary Conditions

• “Neumann” ⇐⇒ prescribe derivatives

• E.g., φ′(0) = u, φ′(1) = v

• (Again, many possible solutions.)

Neumann Boundary Conditions

• “Neumann” ⇐⇒ prescribe derivatives

• E.g., φ′(0) = u, φ′(1) = v

• (Again, many possible solutions.)

Both Neumann & Dirichlet

• Or: prescribe some values, some derivatives

• E.g., φ′(0) = u, φ(1) = b

• (What about φ′(1) = v, φ(1) = b?)

Both Neumann & Dirichlet

• Or: prescribe some values, some derivatives

• E.g., φ′(0) = u, φ(1) = b

• (What about φ′(1) = v, φ(1) = b?)

Both Neumann & Dirichlet

• Or: prescribe some values, some derivatives

• E.g., φ′(0) = u, φ(1) = b

• (What about φ′(1) = v, φ(1) = b?)

Laplace w/ Dirichlet Boundary Conditions (1D)

• 1D Laplace: ∂2φ/∂x2 = 0

• Solutions: φ(x) = cx + d (linear functions)

• Can we always satisfy Dirichlet boundary conditions?

• Yes: a line can interpolate any two points

Laplace w/ Dirichlet Boundary Conditions (1D)

• 1D Laplace: ∂2φ/∂x2 = 0

• Solutions: φ(x) = cx + d (linear functions)

• Can we always satisfy Dirichlet boundary conditions?

• Yes: a line can interpolate any two points

Laplace w/ Dirichlet Boundary Conditions (1D)

• 1D Laplace: ∂2φ/∂x2 = 0

• Solutions: φ(x) = cx + d (linear functions)

• Can we always satisfy Dirichlet boundary conditions?

• Yes: a line can interpolate any two points

Laplace w/ Dirichlet Boundary Conditions (1D)

• 1D Laplace: ∂2φ/∂x2 = 0

• Solutions: φ(x) = cx + d (linear functions)

• Can we always satisfy Dirichlet boundary conditions?

• Yes: a line can interpolate any two points

Laplace w/ Neumann Boundary Conditions (1D)

• What about Neumann boundary conditions?

• Solution must still be a line: φ(x) = cx + d

• Can we prescribe the derivative at both ends?

• No! A line can have only one slope!

• In general: solutions to PDE may not exist for given BCs

Laplace w/ Neumann Boundary Conditions (1D)

• What about Neumann boundary conditions?

• Solution must still be a line: φ(x) = cx + d

• Can we prescribe the derivative at both ends?

• No! A line can have only one slope!

• In general: solutions to PDE may not exist for given BCs

Laplace w/ Neumann Boundary Conditions (1D)

• What about Neumann boundary conditions?

• Solution must still be a line: φ(x) = cx + d

• Can we prescribe the derivative at both ends?

• No! A line can have only one slope!

• In general: solutions to PDE may not exist for given BCs

Laplace w/ Neumann Boundary Conditions (1D)

• What about Neumann boundary conditions?

• Solution must still be a line: φ(x) = cx + d

• Can we prescribe the derivative at both ends?

• No! A line can have only one slope!

• In general: solutions to PDE may not exist for given BCs

Laplace w/ Neumann Boundary Conditions (1D)

• What about Neumann boundary conditions?

• Solution must still be a line: φ(x) = cx + d

• Can we prescribe the derivative at both ends?

• No! A line can have only one slope!

• In general: solutions to PDE may not exist for given BCs

Laplace w/ Dirichlet Boundary Conditions (2D)

• 2D Laplace: ∆φ = 0

• Can we always satisfy Dirichlet boundary conditions?

• Yes: Laplace is steady-state solution to heat flow d
dt φ = ∆φ

• Dirichlet data is just “heat” along boundary

Laplace w/ Dirichlet Boundary Conditions (2D)

• 2D Laplace: ∆φ = 0

• Can we always satisfy Dirichlet boundary conditions?

• Yes: Laplace is steady-state solution to heat flow d
dt φ = ∆φ

• Dirichlet data is just “heat” along boundary

Laplace w/ Dirichlet Boundary Conditions (2D)

• 2D Laplace: ∆φ = 0

• Can we always satisfy Dirichlet boundary conditions?

• Yes: Laplace is steady-state solution to heat flow d
dt φ = ∆φ

• Dirichlet data is just “heat” along boundary

Laplace w/ Neumann Boundary Conditions (2D)

• What about Neumann boundary
conditions?

• Still want to solve ∆φ = 0

• Want to prescribe normal derivative
n · ∇φ

• Wasn’t always possible in 1D. . .

• In 2D, we have divergence theorem:∫
Ω

0 !
=
∫

Ω
∆φ =

∫
Ω
∇ ·∇φ =

∫
∂Ω

n · ∇φ

• Conclusion: can only solve ∆φ = 0 if
Neumann BCs have zero mean!

Laplace w/ Neumann Boundary Conditions (2D)

• What about Neumann boundary
conditions?

• Still want to solve ∆φ = 0

• Want to prescribe normal derivative
n · ∇φ

• Wasn’t always possible in 1D. . .

• In 2D, we have divergence theorem:∫
Ω

0 !
=
∫

Ω
∆φ =

∫
Ω
∇ ·∇φ =

∫
∂Ω

n · ∇φ

• Conclusion: can only solve ∆φ = 0 if
Neumann BCs have zero mean!

Laplace w/ Neumann Boundary Conditions (2D)

• What about Neumann boundary
conditions?

• Still want to solve ∆φ = 0

• Want to prescribe normal derivative
n · ∇φ

• Wasn’t always possible in 1D. . .

• In 2D, we have divergence theorem:∫
Ω

0 !
=
∫

Ω
∆φ =

∫
Ω
∇ ·∇φ =

∫
∂Ω

n · ∇φ

• Conclusion: can only solve ∆φ = 0 if
Neumann BCs have zero mean!

Laplace w/ Neumann Boundary Conditions (2D)

• What about Neumann boundary
conditions?

• Still want to solve ∆φ = 0

• Want to prescribe normal derivative
n · ∇φ

• Wasn’t always possible in 1D. . .

• In 2D, we have divergence theorem:∫
Ω

0 !
=
∫

Ω
∆φ =

∫
Ω
∇ ·∇φ =

∫
∂Ω

n · ∇φ

• Conclusion: can only solve ∆φ = 0 if
Neumann BCs have zero mean!

Laplace w/ Neumann Boundary Conditions (2D)

• What about Neumann boundary
conditions?

• Still want to solve ∆φ = 0

• Want to prescribe normal derivative
n · ∇φ

• Wasn’t always possible in 1D. . .

• In 2D, we have divergence theorem:∫
Ω

0 !
=
∫

Ω
∆φ =

∫
Ω
∇ ·∇φ =

∫
∂Ω

n · ∇φ

• Conclusion: can only solve ∆φ = 0 if
Neumann BCs have zero mean!

Discrete Boundary Conditions - Dirichlet

• Suppose we want to solve ∆u = f s.t. u|∂Ω = g (Poisson
equation w/ Dirichlet boundary conditions)

• Discretized Poisson equation as Cu = Mf

• Let I, B denote interior, boundary vertices, respectively. Get[
CII CIB

CBI CBB

] [
uI

uB

]
=

[
MII 0
0 MBB

] [
fI
fB

]
• Since uB is known (boundary values), solve just

CIIuI = MIIfI − CIBuB for uI (right-hand side is known).

• Can skip matrix multiply and compute entries of RHS
directly: Aifi −∑j∈N∂(i)(cot αij + cot βij)uj

• Here N∂(i) denotes neighbors of i on the boundary

Discrete Boundary Conditions - Dirichlet

• Suppose we want to solve ∆u = f s.t. u|∂Ω = g (Poisson
equation w/ Dirichlet boundary conditions)

• Discretized Poisson equation as Cu = Mf

• Let I, B denote interior, boundary vertices, respectively. Get[
CII CIB

CBI CBB

] [
uI

uB

]
=

[
MII 0
0 MBB

] [
fI
fB

]
• Since uB is known (boundary values), solve just

CIIuI = MIIfI − CIBuB for uI (right-hand side is known).

• Can skip matrix multiply and compute entries of RHS
directly: Aifi −∑j∈N∂(i)(cot αij + cot βij)uj

• Here N∂(i) denotes neighbors of i on the boundary

Discrete Boundary Conditions - Dirichlet

• Suppose we want to solve ∆u = f s.t. u|∂Ω = g (Poisson
equation w/ Dirichlet boundary conditions)

• Discretized Poisson equation as Cu = Mf

• Let I, B denote interior, boundary vertices, respectively. Get[
CII CIB

CBI CBB

] [
uI

uB

]
=

[
MII 0
0 MBB

] [
fI
fB

]

• Since uB is known (boundary values), solve just
CIIuI = MIIfI − CIBuB for uI (right-hand side is known).

• Can skip matrix multiply and compute entries of RHS
directly: Aifi −∑j∈N∂(i)(cot αij + cot βij)uj

• Here N∂(i) denotes neighbors of i on the boundary

Discrete Boundary Conditions - Dirichlet

• Suppose we want to solve ∆u = f s.t. u|∂Ω = g (Poisson
equation w/ Dirichlet boundary conditions)

• Discretized Poisson equation as Cu = Mf

• Let I, B denote interior, boundary vertices, respectively. Get[
CII CIB

CBI CBB

] [
uI

uB

]
=

[
MII 0
0 MBB

] [
fI
fB

]
• Since uB is known (boundary values), solve just

CIIuI = MIIfI − CIBuB for uI (right-hand side is known).

• Can skip matrix multiply and compute entries of RHS
directly: Aifi −∑j∈N∂(i)(cot αij + cot βij)uj

• Here N∂(i) denotes neighbors of i on the boundary

Discrete Boundary Conditions - Dirichlet

• Suppose we want to solve ∆u = f s.t. u|∂Ω = g (Poisson
equation w/ Dirichlet boundary conditions)

• Discretized Poisson equation as Cu = Mf

• Let I, B denote interior, boundary vertices, respectively. Get[
CII CIB

CBI CBB

] [
uI

uB

]
=

[
MII 0
0 MBB

] [
fI
fB

]
• Since uB is known (boundary values), solve just

CIIuI = MIIfI − CIBuB for uI (right-hand side is known).

• Can skip matrix multiply and compute entries of RHS
directly: Aifi −∑j∈N∂(i)(cot αij + cot βij)uj

• Here N∂(i) denotes neighbors of i on the boundary

Discrete Boundary Conditions - Neumann

• Integrate both sides of ∆u = f over cell Ci (“finite volume”)∫
Ci

f !
=
∫

Ci

∆u =
∫

Ci

∇ · ∇u =
∫

∂Ci

n · ∇u

• Gives usual cotangent formula for interior vertices; for
boundary vertex i, yields

Aii
!
= 1

2 (ga + gb) +
1
2 ∑

j∈Nint

(cot αij + cot βij)(uj − ui)

• Here ga, gb are prescribed normal derivatives; just subtract
from RHS and solve Cu = Mf as usual

Discrete Boundary Conditions - Neumann

• Other possible boundary conditions (e.g., Robin)

• Dirichlet, Neumann most common—implementation of
other BCs will be similar

• When in doubt, return to smooth equations and integrate!

• . . . and make sure your equation has a solution!

• Solver will NOT always tell you if there’s a problem!

• Easy test? Compute the residual r := Ax− b. If the relative
residual ||r||∞/||b||∞ is far from zero (e.g., greater than
10−14 in double precision), you did not actually solve your
problem!

Discrete Boundary Conditions - Neumann

• Other possible boundary conditions (e.g., Robin)

• Dirichlet, Neumann most common—implementation of
other BCs will be similar

• When in doubt, return to smooth equations and integrate!

• . . . and make sure your equation has a solution!

• Solver will NOT always tell you if there’s a problem!

• Easy test? Compute the residual r := Ax− b. If the relative
residual ||r||∞/||b||∞ is far from zero (e.g., greater than
10−14 in double precision), you did not actually solve your
problem!

Discrete Boundary Conditions - Neumann

• Other possible boundary conditions (e.g., Robin)

• Dirichlet, Neumann most common—implementation of
other BCs will be similar

• When in doubt, return to smooth equations and integrate!

• . . . and make sure your equation has a solution!

• Solver will NOT always tell you if there’s a problem!

• Easy test? Compute the residual r := Ax− b. If the relative
residual ||r||∞/||b||∞ is far from zero (e.g., greater than
10−14 in double precision), you did not actually solve your
problem!

Discrete Boundary Conditions - Neumann

• Other possible boundary conditions (e.g., Robin)

• Dirichlet, Neumann most common—implementation of
other BCs will be similar

• When in doubt, return to smooth equations and integrate!

• . . . and make sure your equation has a solution!

• Solver will NOT always tell you if there’s a problem!

• Easy test? Compute the residual r := Ax− b. If the relative
residual ||r||∞/||b||∞ is far from zero (e.g., greater than
10−14 in double precision), you did not actually solve your
problem!

Discrete Boundary Conditions - Neumann

• Other possible boundary conditions (e.g., Robin)

• Dirichlet, Neumann most common—implementation of
other BCs will be similar

• When in doubt, return to smooth equations and integrate!

• . . . and make sure your equation has a solution!

• Solver will NOT always tell you if there’s a problem!

• Easy test? Compute the residual r := Ax− b. If the relative
residual ||r||∞/||b||∞ is far from zero (e.g., greater than
10−14 in double precision), you did not actually solve your
problem!

Discrete Boundary Conditions - Neumann

• Other possible boundary conditions (e.g., Robin)

• Dirichlet, Neumann most common—implementation of
other BCs will be similar

• When in doubt, return to smooth equations and integrate!

• . . . and make sure your equation has a solution!

• Solver will NOT always tell you if there’s a problem!

• Easy test? Compute the residual r := Ax− b. If the relative
residual ||r||∞/||b||∞ is far from zero (e.g., greater than
10−14 in double precision), you did not actually solve your
problem!

Discrete Boundary Conditions - Neumann

• Other possible boundary conditions (e.g., Robin)

• Dirichlet, Neumann most common—implementation of
other BCs will be similar

• When in doubt, return to smooth equations and integrate!

• . . . and make sure your equation has a solution!

• Solver will NOT always tell you if there’s a problem!

• Easy test? Compute the residual r := Ax− b. If the relative
residual ||r||∞/||b||∞ is far from zero (e.g., greater than
10−14 in double precision), you did not actually solve your
problem!

Alternative Discretizations

• Have spent a lot of time on triangle meshes. . .

• . . . plenty of other ways to describe a surface!

• E.g., points are increasingly popular (due to 3D scanning)

• Also: more accurate discretization on triangle meshes

Alternative Discretizations

• Have spent a lot of time on triangle meshes. . .

• . . . plenty of other ways to describe a surface!

• E.g., points are increasingly popular (due to 3D scanning)

• Also: more accurate discretization on triangle meshes

Alternative Discretizations

• Have spent a lot of time on triangle meshes. . .

• . . . plenty of other ways to describe a surface!

• E.g., points are increasingly popular (due to 3D scanning)

• Also: more accurate discretization on triangle meshes

Alternative Discretizations

• Have spent a lot of time on triangle meshes. . .

• . . . plenty of other ways to describe a surface!

• E.g., points are increasingly popular (due to 3D scanning)

• Also: more accurate discretization on triangle meshes

Quad, Polygon Meshes

• Quads popular alternative to triangles.
Why?

• capture principal curvatures of a surface
• nice bases can be built via tensor

products
• see [Bommes et al., 2013] for further

discussion

• More generally: meshes with quads and
triangles and . . .

• Nice discretization:
[Alexa and Wardetzky, 2011]

• Can then solve all the same problems
(Laplace, Poisson, heat, . . .)

Quad, Polygon Meshes

• Quads popular alternative to triangles.
Why?

• capture principal curvatures of a surface

• nice bases can be built via tensor
products

• see [Bommes et al., 2013] for further
discussion

• More generally: meshes with quads and
triangles and . . .

• Nice discretization:
[Alexa and Wardetzky, 2011]

• Can then solve all the same problems
(Laplace, Poisson, heat, . . .)

Quad, Polygon Meshes

• Quads popular alternative to triangles.
Why?

• capture principal curvatures of a surface
• nice bases can be built via tensor

products

• see [Bommes et al., 2013] for further
discussion

• More generally: meshes with quads and
triangles and . . .

• Nice discretization:
[Alexa and Wardetzky, 2011]

• Can then solve all the same problems
(Laplace, Poisson, heat, . . .)

Quad, Polygon Meshes

• Quads popular alternative to triangles.
Why?

• capture principal curvatures of a surface
• nice bases can be built via tensor

products
• see [Bommes et al., 2013] for further

discussion

• More generally: meshes with quads and
triangles and . . .

• Nice discretization:
[Alexa and Wardetzky, 2011]

• Can then solve all the same problems
(Laplace, Poisson, heat, . . .)

Quad, Polygon Meshes

• Quads popular alternative to triangles.
Why?

• capture principal curvatures of a surface
• nice bases can be built via tensor

products
• see [Bommes et al., 2013] for further

discussion

• More generally: meshes with quads and
triangles and . . .

• Nice discretization:
[Alexa and Wardetzky, 2011]

• Can then solve all the same problems
(Laplace, Poisson, heat, . . .)

Quad, Polygon Meshes

• Quads popular alternative to triangles.
Why?

• capture principal curvatures of a surface
• nice bases can be built via tensor

products
• see [Bommes et al., 2013] for further

discussion

• More generally: meshes with quads and
triangles and . . .

• Nice discretization:
[Alexa and Wardetzky, 2011]

• Can then solve all the same problems
(Laplace, Poisson, heat, . . .)

Quad, Polygon Meshes

• Quads popular alternative to triangles.
Why?

• capture principal curvatures of a surface
• nice bases can be built via tensor

products
• see [Bommes et al., 2013] for further

discussion

• More generally: meshes with quads and
triangles and . . .

• Nice discretization:
[Alexa and Wardetzky, 2011]

• Can then solve all the same problems
(Laplace, Poisson, heat, . . .)

Point Clouds

• Real data often point cloud with no
connectivity (plus noise, holes. . .)

• Can still build Laplace operator!

• Rough idea: use heat flow to discretize ∆

• d
dt u = ∆u =⇒ ∆u ≈ (u(T)− u(0))/T

• How do we get u(T)? Convolve u with
(Euclidean) heat kernel 1

4πT er2/4T

• Converges with more samples, T goes
to zero (under certain conditions!)

• Details: [Belkin et al., 2009, Liu et al., 2012]

• From there, solve all the same
problems! (Again.)

Point Clouds

• Real data often point cloud with no
connectivity (plus noise, holes. . .)

• Can still build Laplace operator!

• Rough idea: use heat flow to discretize ∆

• d
dt u = ∆u =⇒ ∆u ≈ (u(T)− u(0))/T

• How do we get u(T)? Convolve u with
(Euclidean) heat kernel 1

4πT er2/4T

• Converges with more samples, T goes
to zero (under certain conditions!)

• Details: [Belkin et al., 2009, Liu et al., 2012]

• From there, solve all the same
problems! (Again.)

Point Clouds

• Real data often point cloud with no
connectivity (plus noise, holes. . .)

• Can still build Laplace operator!

• Rough idea: use heat flow to discretize ∆

• d
dt u = ∆u =⇒ ∆u ≈ (u(T)− u(0))/T

• How do we get u(T)? Convolve u with
(Euclidean) heat kernel 1

4πT er2/4T

• Converges with more samples, T goes
to zero (under certain conditions!)

• Details: [Belkin et al., 2009, Liu et al., 2012]

• From there, solve all the same
problems! (Again.)

Point Clouds

• Real data often point cloud with no
connectivity (plus noise, holes. . .)

• Can still build Laplace operator!

• Rough idea: use heat flow to discretize ∆

• d
dt u = ∆u =⇒ ∆u ≈ (u(T)− u(0))/T

• How do we get u(T)? Convolve u with
(Euclidean) heat kernel 1

4πT er2/4T

• Converges with more samples, T goes
to zero (under certain conditions!)

• Details: [Belkin et al., 2009, Liu et al., 2012]

• From there, solve all the same
problems! (Again.)

Point Clouds

• Real data often point cloud with no
connectivity (plus noise, holes. . .)

• Can still build Laplace operator!

• Rough idea: use heat flow to discretize ∆

• d
dt u = ∆u =⇒ ∆u ≈ (u(T)− u(0))/T

• How do we get u(T)? Convolve u with
(Euclidean) heat kernel 1

4πT er2/4T

• Converges with more samples, T goes
to zero (under certain conditions!)

• Details: [Belkin et al., 2009, Liu et al., 2012]

• From there, solve all the same
problems! (Again.)

Point Clouds

• Real data often point cloud with no
connectivity (plus noise, holes. . .)

• Can still build Laplace operator!

• Rough idea: use heat flow to discretize ∆

• d
dt u = ∆u =⇒ ∆u ≈ (u(T)− u(0))/T

• How do we get u(T)? Convolve u with
(Euclidean) heat kernel 1

4πT er2/4T

• Converges with more samples, T goes
to zero (under certain conditions!)

• Details: [Belkin et al., 2009, Liu et al., 2012]

• From there, solve all the same
problems! (Again.)

Point Clouds

• Real data often point cloud with no
connectivity (plus noise, holes. . .)

• Can still build Laplace operator!

• Rough idea: use heat flow to discretize ∆

• d
dt u = ∆u =⇒ ∆u ≈ (u(T)− u(0))/T

• How do we get u(T)? Convolve u with
(Euclidean) heat kernel 1

4πT er2/4T

• Converges with more samples, T goes
to zero (under certain conditions!)

• Details: [Belkin et al., 2009, Liu et al., 2012]

• From there, solve all the same
problems! (Again.)

Point Clouds

• Real data often point cloud with no
connectivity (plus noise, holes. . .)

• Can still build Laplace operator!

• Rough idea: use heat flow to discretize ∆

• d
dt u = ∆u =⇒ ∆u ≈ (u(T)− u(0))/T

• How do we get u(T)? Convolve u with
(Euclidean) heat kernel 1

4πT er2/4T

• Converges with more samples, T goes
to zero (under certain conditions!)

• Details: [Belkin et al., 2009, Liu et al., 2012]

• From there, solve all the same
problems! (Again.)

Dual Mesh

barycentric circumcentric (superimposed)

• Earlier saw Laplacian discretized via dual mesh

• Different duals lead to operators with different accuracy
• Space of orthogonal duals explored by [Mullen et al., 2011]
• Leads to many applications in geometry processing

[de Goes et al., 2012, de Goes et al., 2013, de Goes et al., 2014]

Dual Mesh

barycentric circumcentric (superimposed)

• Earlier saw Laplacian discretized via dual mesh
• Different duals lead to operators with different accuracy

• Space of orthogonal duals explored by [Mullen et al., 2011]
• Leads to many applications in geometry processing

[de Goes et al., 2012, de Goes et al., 2013, de Goes et al., 2014]

Dual Mesh

barycentric circumcentric (superimposed)

• Earlier saw Laplacian discretized via dual mesh
• Different duals lead to operators with different accuracy
• Space of orthogonal duals explored by [Mullen et al., 2011]

• Leads to many applications in geometry processing
[de Goes et al., 2012, de Goes et al., 2013, de Goes et al., 2014]

Dual Mesh

barycentric circumcentric (superimposed)

• Earlier saw Laplacian discretized via dual mesh
• Different duals lead to operators with different accuracy
• Space of orthogonal duals explored by [Mullen et al., 2011]
• Leads to many applications in geometry processing

[de Goes et al., 2012, de Goes et al., 2013, de Goes et al., 2014]

Volumes / Tetrahedral Meshes

• Same problems (Poisson, Laplace, etc.)
can also be solved on volumes

• Popular choice: tetrahedral meshes
(graded, conform to boundary, . . .)

• Many ways to get Laplace matrix

• One nice way: discrete exterior calculus
(DEC) [Hirani, 2003, Desbrun et al., 2005]

• Just incidence matrices (e.g., which tets
contain which triangles?) & primal /
dual volumes (area, length, etc.).

• Added bonus: play with definition of
dual to improve accuracy
[Mullen et al., 2011].

Volumes / Tetrahedral Meshes

• Same problems (Poisson, Laplace, etc.)
can also be solved on volumes

• Popular choice: tetrahedral meshes
(graded, conform to boundary, . . .)

• Many ways to get Laplace matrix

• One nice way: discrete exterior calculus
(DEC) [Hirani, 2003, Desbrun et al., 2005]

• Just incidence matrices (e.g., which tets
contain which triangles?) & primal /
dual volumes (area, length, etc.).

• Added bonus: play with definition of
dual to improve accuracy
[Mullen et al., 2011].

Volumes / Tetrahedral Meshes

• Same problems (Poisson, Laplace, etc.)
can also be solved on volumes

• Popular choice: tetrahedral meshes
(graded, conform to boundary, . . .)

• Many ways to get Laplace matrix

• One nice way: discrete exterior calculus
(DEC) [Hirani, 2003, Desbrun et al., 2005]

• Just incidence matrices (e.g., which tets
contain which triangles?) & primal /
dual volumes (area, length, etc.).

• Added bonus: play with definition of
dual to improve accuracy
[Mullen et al., 2011].

Volumes / Tetrahedral Meshes

• Same problems (Poisson, Laplace, etc.)
can also be solved on volumes

• Popular choice: tetrahedral meshes
(graded, conform to boundary, . . .)

• Many ways to get Laplace matrix

• One nice way: discrete exterior calculus
(DEC) [Hirani, 2003, Desbrun et al., 2005]

• Just incidence matrices (e.g., which tets
contain which triangles?) & primal /
dual volumes (area, length, etc.).

• Added bonus: play with definition of
dual to improve accuracy
[Mullen et al., 2011].

Volumes / Tetrahedral Meshes

• Same problems (Poisson, Laplace, etc.)
can also be solved on volumes

• Popular choice: tetrahedral meshes
(graded, conform to boundary, . . .)

• Many ways to get Laplace matrix

• One nice way: discrete exterior calculus
(DEC) [Hirani, 2003, Desbrun et al., 2005]

• Just incidence matrices (e.g., which tets
contain which triangles?) & primal /
dual volumes (area, length, etc.).

• Added bonus: play with definition of
dual to improve accuracy
[Mullen et al., 2011].

Volumes / Tetrahedral Meshes

• Same problems (Poisson, Laplace, etc.)
can also be solved on volumes

• Popular choice: tetrahedral meshes
(graded, conform to boundary, . . .)

• Many ways to get Laplace matrix

• One nice way: discrete exterior calculus
(DEC) [Hirani, 2003, Desbrun et al., 2005]

• Just incidence matrices (e.g., which tets
contain which triangles?) & primal /
dual volumes (area, length, etc.).

• Added bonus: play with definition of
dual to improve accuracy
[Mullen et al., 2011].

...and More!

• Covered some standard discretizations

• Many possibilities (level sets, hex
meshes. . .)

• Often enough to have gradient G and
inner product W.

• (weak!) Laplacian is then C = GTWG
(think Dirichlet energy)

• Key message:
build Laplace; do lots of cool stuff.

...and More!

• Covered some standard discretizations

• Many possibilities (level sets, hex
meshes. . .)

• Often enough to have gradient G and
inner product W.

• (weak!) Laplacian is then C = GTWG
(think Dirichlet energy)

• Key message:
build Laplace; do lots of cool stuff.

...and More!

• Covered some standard discretizations

• Many possibilities (level sets, hex
meshes. . .)

• Often enough to have gradient G and
inner product W.

• (weak!) Laplacian is then C = GTWG
(think Dirichlet energy)

• Key message:
build Laplace; do lots of cool stuff.

...and More!

• Covered some standard discretizations

• Many possibilities (level sets, hex
meshes. . .)

• Often enough to have gradient G and
inner product W.

• (weak!) Laplacian is then C = GTWG
(think Dirichlet energy)

• Key message:
build Laplace; do lots of cool stuff.

...and More!

• Covered some standard discretizations

• Many possibilities (level sets, hex
meshes. . .)

• Often enough to have gradient G and
inner product W.

• (weak!) Laplacian is then C = GTWG
(think Dirichlet energy)

• Key message:
build Laplace; do lots of cool stuff.

APPLICATIONS

Remarkably Common Pipeline

{simple pre-processing}

−→∆
(−1)

−→ {simple post-processing}

Common Refrain

“Our method boils down to
‘backslash’ in Matlab!”

Reminder: Model Equations

∆f = 0 Laplace equation
Linear solve

∆f = g Poisson equation
Linear solve

ft = ∆f Heat equation
ODE time-step

∆φi = λiφi Vibration modes
Eigenproblem

Reminder: Model Equations

∆f = 0 Laplace equation
Linear solve

∆f = g Poisson equation
Linear solve

ft = ∆f Heat equation
ODE time-step

∆φi = λiφi Vibration modes
Eigenproblem

Look here!

Reminder: Model Equations

∆f = 0 Laplace equation
Linear solve

∆f = g Poisson equation
Linear solve

ft = ∆f Heat equation
ODE time-step

∆φi = λiφi Vibration modes
Eigenproblem

Reminder: Variational Interpretation

minf (x)
∫

Σ ‖∇f (x)‖2 dA
l <calculus>

∆f (x) = 0

The (inverse) Laplacian wants to
make functions smooth.

“Elliptic regularity”

∆f = 0

Reminder: Variational Interpretation

minf (x)
∫

Σ ‖∇f (x)‖2 dA
l <calculus>

∆f (x) = 0

The (inverse) Laplacian wants to
make functions smooth.

“Elliptic regularity”

∆f = 0

Application: Mesh Parameterization

Want smooth f : M→ R2.

∆f = 0

Variational Approach

minf :M→R2
∫
‖∇f‖2

Does this work?

f (x) ≡ const.

∆f = 0

Variational Approach

minf :M→R2
∫
‖∇f‖2

Does this work?

f (x) ≡ const.

∆f = 0

Harmonic Parameterization

min f :M→R2

f |∂M fixed

∫
‖∇f‖2

[Eck et al., 1995]

∆f = 0 in M\∂M, with f |∂M fixed

∆f = 0

Harmonic Parameterization

min f :M→R2

f |∂M fixed

∫
‖∇f‖2

[Eck et al., 1995]

∆f = 0 in M\∂M, with f |∂M fixed

∆f = 0

Reminder: Model Equations

∆f = 0 Laplace equation
Linear solve

∆f = g Poisson equation
Linear solve

ft = ∆f Heat equation
ODE time-step

∆φi = λiφi Vibration modes
Eigenproblem

Recall: Green’s Function

∆gp = δp for p ∈ M

∆f = g

Application: Biharmonic Distances

db(p, q) ≡ ‖gp− gq‖2

[Lipman et al., 2010], formula in [Solomon et al., 2014]

∆f = g

Hodge Decomposition

~v(x) = R90◦∇g +∇f +~h(x)

• Divergence-free part: R90◦∇g
• Curl-free part: ∇f
• Harmonic part:~h(x) (=~0 if surface has no holes)

∆f = g

Computing the Curl-Free Part

minf (x)
∫

Σ ‖∇f (x)−~v(x)‖2 dA
l <calculus>

∆f (x) = ∇ ·~v(x)
Get divergence-free part as~v(x)−∇f (x) (when~h ≡~0)

∆f = g

Application: Vector Field Design

∆f = −K̄ −→~v(x) = ∇f (x)

[Crane et al., 2010, de Goes and Crane, 2010]

∆f = g

Application: Earth Mover’s Distance

min
~J(x)

∫
M
‖~J(x)‖

such that~J = R90◦∇g +∇f +~h(x)
∆f = ρ1 − ρ0

[Solomon et al., 2014]

∆f = g

Reminder: Model Equations

∆f = 0 Laplace equation
Linear solve

∆f = g Poisson equation
Linear solve

ft = ∆f Heat equation
ODE time-step

∆φi = λiφi Vibration modes
Eigenproblem

Generalizing Gaussian Blurs

Gradient descent on
∫
‖∇f (x)‖2 dx:

∂f (x,t)
∂t = ∆xf (x, t)

with f (·, 0) ≡ f0(·).

Image by M. Bottazzi

ft = ∆f

Application: Implicit Fairing

Idea: Take f0(x) to be the coordinate function.

Detail: ∆ changes over time.
[Desbrun et al., 1999]

ft = ∆f

Application: Implicit Fairing

Idea: Take f0(x) to be the coordinate function.
Detail: ∆ changes over time.

[Desbrun et al., 1999]

ft = ∆f

Alternative: Screened Poisson Smoothing

Simplest incarnation of [Chuang and Kazhdan, 2011]:

minf (x) α2‖f − f0‖2 + ‖∇f‖2

l

(α2I− ∆)f = α2f0

∆f = g

Interesting Connection

(Semi-)Implicit Euler:
(I− hL)uk+1 = uk

Screened Poisson:
(α2I− ∆)f = α2f0

One time step of implicit Euler
is screened Poisson.

Accidentally replaced one PDE with another!

ft = ∆f → ∆f = g

Interesting Connection

(Semi-)Implicit Euler:
(I− hL)uk+1 = uk

Screened Poisson:
(α2I− ∆)f = α2f0

One time step of implicit Euler
is screened Poisson.

Accidentally replaced one PDE with another!

ft = ∆f → ∆f = g

Interesting Connection

(Semi-)Implicit Euler:
(I− hL)uk+1 = uk

Screened Poisson:
(α2I− ∆)f = α2f0

One time step of implicit Euler
is screened Poisson.

Accidentally replaced one PDE with another!

ft = ∆f → ∆f = g

Application: The “Heat Method”

Eikonal equation for geodesics:
‖∇φ‖2 = 1

=⇒ Need direction of ∇φ.

Idea:
Find u such that ∇u is parallel to

geodesic.

ft = ∆f and ∆f = g

Application: The “Heat Method”

Eikonal equation for geodesics:
‖∇φ‖2 = 1

=⇒ Need direction of ∇φ.

Idea:
Find u such that ∇u is parallel to

geodesic.

ft = ∆f and ∆f = g

Application: The “Heat Method”

1 Integrate u′ = ∇u (heat equation) to time t� 1.

2 Define vector field X ≡ − ∇u
‖∇u‖2

.

3 Solve least-squares problem ∇φ ≈ X ⇐⇒ ∆φ = ∇ ·X.

Blazingly fast!
[Crane et al., 2013b]

ft = ∆f and ∆f = g

Reminder: Model Equations

∆f = 0 Laplace equation
Linear solve

∆f = g Poisson equation
Linear solve

ft = ∆f Heat equation
ODE time-step

∆φi = λiφi Vibration modes
Eigenproblem

Laplace-Beltrami Eigenfunctions

Image by B. Vallet and B. Lévy

Use eigenvalues and eigenfunctions to
characterize shape.

∆φi = λiφi

Intrinsic Laplacian-Based Descriptors

All computable from eigenfunctions!

• HKS(x; t) = ∑i eλitφi(x)2 [Sun et al., 2009]

• GPS(x) =
(

φ1(x)√
−λ1

, φ2(x)√
−λ2

, . . .
)

[Rustamov, 2007]

• WKS(x; e) = Ce ∑i φi(x)2 exp
(
− 1

2σ2 (e− log(−λi))
)

[Aubry et al., 2011]

Many others—or learn a function of eigenvalues!
[Litman and Bronstein, 2014]

∆φi = λiφi

Example: Heat Kernel Signature

Heat diffusion encodes geometry for all times t ≥ 0!

[Sun et al., 2009]

HKS(x; t) ≡ kt(x, x)

“Amount of heat diffused from
x to itself over at time t.”

• Signature of point x is a
function of t ≥ 0

• Intrinsic descriptor

ft = ∆f

HKS via Laplacian Eigenfunctions

∆φi = λiφi, f0(x) = ∑
i

aiφi(x)

∂f (x, t)
∂t

= ∆f with f (x, 0) ≡ f0(x)

=⇒ f (x, t) = ∑
i

aieλitφi(x)

=⇒ HKS(x; t) ≡ kt(x, x)
= ∑

i
eλitφi(x)2

∆φi = λiφi

HKS via Laplacian Eigenfunctions

∆φi = λiφi, f0(x) = ∑
i

aiφi(x)

∂f (x, t)
∂t

= ∆f with f (x, 0) ≡ f0(x)

=⇒ f (x, t) = ∑
i

aieλitφi(x)

=⇒ HKS(x; t) ≡ kt(x, x)
= ∑

i
eλitφi(x)2

∆φi = λiφi

HKS via Laplacian Eigenfunctions

∆φi = λiφi, f0(x) = ∑
i

aiφi(x)

∂f (x, t)
∂t

= ∆f with f (x, 0) ≡ f0(x)

=⇒ f (x, t) = ∑
i

aieλitφi(x)

=⇒ HKS(x; t) ≡ kt(x, x)
= ∑

i
eλitφi(x)2

∆φi = λiφi

Application: Shape Retrieval

Solve problems like shape similarity search.

“Shape DNA” [Reuter et al., 2006]:
Identify a shape by its vector of Laplacian eigenvalues

0 1 2 3

0

1

2

3

0 1 2 3

0

1

2

3

∆φi = λiφi

Different Application: Quadrangulation

Connect critical points (well-spaced) of φi
in Morse-Smale complex.

[Dong et al., 2006]

∆φi = λiφi

Other Ideas I

• Mesh editing: Displacement of vertices and
parameters of a deformation should be smooth
functions along a surface
[Sorkine et al., 2004, Sorkine and Alexa, 2007] (and
many others)

Other Ideas II

• Surface reconstruction: Poisson equation helps
distinguish inside and outside [Kazhdan et al., 2006]

• Regularization for mapping: To compute
φ : M1 → M2, ask that φ ◦ ∆1 ≈ ∆2 ◦ φ

[Ovsjanikov et al., 2012]

For Slides

http://ddg.cs.columbia.edu/
SGP2014/LaplaceBeltrami.pdf

http://ddg.cs.columbia.edu/SGP2014/LaplaceBeltrami.pdf
http://ddg.cs.columbia.edu/SGP2014/LaplaceBeltrami.pdf

Alexa, M. and Wardetzky, M. (2011).
Discrete laplacians on general polygonal meshes.
ACM Trans. Graph., 30(4).

Alon, N., Karp, R., Peleg, D., and West, D. (1995).
A graph-theoretic game and its application to the k-server problem.
SIAM Journal on Computing, 24:78–100.

Aubry, M., Schlickewei, U., and Cremers, D. (2011).
The wave kernel signature: A quantum mechanical approach to shape analysis.
In Proc. ICCV Workshops, pages 1626–1633.

Belkin, M., Sun, J., and Wang, Y. (2009).
Constructing laplace operator from point clouds in rd.
In Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’09, pages
1031–1040, Philadelphia, PA, USA. Society for Industrial and Applied Mathematics.

Bobenko, A. I. and Springborn, B. A. (2005).
A discrete Laplace-Beltrami operator for simplicial surfaces.
ArXiv Mathematics e-prints.

Bommes, D., Lévy, B., Pietroni, N., Puppo, E., Silva, C., Tarini, M., and Zorin, D. (2013).
Quad-mesh generation and processing: A survey.
Computer Graphics Forum, 32(6):51–76.

Bronstein, A. M., Bronstein, M. M., Guibas, L. J., and Ovsjanikov, M. (2011).
Shape Google: Geometric words and expressions for invariant shape retrieval.
ACM Trans. Graph., 30(1):1:1–1:20.

Chuang, M. and Kazhdan, M. (2011).
Interactive and anisotropic geometry processing using the screened Poisson equation.
ACM Trans. Graph., 30(4):57:1–57:10.

Crane, K., de Goes, F., Desbrun, M., and Schröder, P. (2013a).
Digital geometry processing with discrete exterior calculus.

In ACM SIGGRAPH 2013 Courses, SIGGRAPH ’13, pages 7:1–7:126, New York, NY, USA. ACM.

Crane, K., Desbrun, M., and SchrÃűder, P. (2010).
Trivial connections on discrete surfaces.
Computer Graphics Forum, 29(5):1525–1533.

Crane, K., Weischedel, C., and Wardetzky, M. (2013b).
Geodesics in heat: A new approach to computing distance based on heat flow.
ACM Trans. Graph., 32.

de Goes, F., Alliez, P., Owhadi, H., and Desbrun, M. (2013).
On the equilibrium of simplicial masonry structures.
ACM Trans. Graph., 32(4):93:1–93:10.

de Goes, F., Breeden, K., Ostromoukhov, V., and Desbrun, M. (2012).
Blue noise through optimal transport.
ACM Trans. Graph., 31.

de Goes, F. and Crane, K. (2010).
Trivial connections on discrete surfaces revisited: A simplified algorithm for simply-connected surfaces.

de Goes, F., Liu, B., Budninskiy, M., Tong, Y., and Desbrun, M. (2014).
Discrete 2-tensor fields on triangulations.
Symposium on Geometry Processing.

Desbrun, M., Kanso, E., and Tong, Y. (2005).
Discrete differential forms for computational modeling.
In ACM SIGGRAPH 2005 Courses, SIGGRAPH ’05, New York, NY, USA. ACM.

Desbrun, M., Meyer, M., Schröder, P., and Barr, A. H. (1999).
Implicit fairing of irregular meshes using diffusion and curvature flow.
In Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’99,
pages 317–324, New York, NY, USA. ACM Press/Addison-Wesley Publishing Co.

Dong, S., Bremer, P.-T., Garland, M., Pascucci, V., and Hart, J. C. (2006).

Spectral surface quadrangulation.
ACM Trans. Graph., 25(3):1057–1066.

Duffin, R. (1959).
Distributed and lumped networks.
Journal of Mathematics and Mechanics, 8:793–826.

Dunyach, M., Vanderhaeghe, D., Barthe, L., and Botsch, M. (2013).
Adaptive Remeshing for Real-Time Mesh Deformation.
In Proceedings of Eurographics Short Papers, pages 29–32.

Eck, M., DeRose, T., Duchamp, T., Hoppe, H., Lounsbery, M., and Stuetzle, W. (1995).
Multiresolution analysis of arbitrary meshes.
In Proc. SIGGRAPH, pages 173–182.

Gillman, A. and Martinsson, P.-G. (2013).
A direct solver with O(N) complexity for variable coefficient elliptic PDEs discretized via a high-order
composite spectral collocation method.
SIAM Journal on Scientific Computation.

Hirani, A. (2003).
Discrete exterior calculus.

Kazhdan, M., Bolitho, M., and Hoppe, H. (2006).
Poisson surface reconstruction.
In Proc. SGP, pages 61–70. Eurographics Association.

Koutis, I., Miller, G., and Peng, R. (2011).
A nearly m log n time solver for sdd linear systems.
pages 590–598.

Krishnan, D., Fattal, R., and Szeliski, R. (2013).
Efficient preconditioning of laplacian matrices for computer graphics.
ACM Trans. Graph., 32(4):142:1–142:15.

Lavoué, G. (2011).

Bag of words and local spectral descriptor for 3d partial shape retrieval.
In Proc. 3DOR, pages 41–48. Eurographics Association.

Li, X. and Godil, A. (2009).
Exploring the bag-of-words method for 3d shape retrieval.
In Proc. ICIP, pages 437–440.

Lipman, Y., Rustamov, R. M., and Funkhouser, T. A. (2010).
Biharmonic distance.
ACM Trans. Graph., 29(3):27:1–27:11.

Litman, R. and Bronstein, A. M. (2014).
Learning spectral descriptors for deformable shape correspondence.
PAMI, 36(1):171–180.

Liu, Y., Prabhakaran, B., and Guo, X. (2012).
Point-based manifold harmonics.
IEEE Trans. Vis. Comput. Graph., 18(10):1693–1703.

MacNeal, R. (1949).
The solution of partial differential equations by means of electrical networks.

Mullen, P., Memari, P., de Goes, F., and Desbrun, M. (2011).
Hot: Hodge-optimized triangulations.
ACM Trans. Graph., 30(4):103:1–103:12.

Ovsjanikov, M., Ben-Chen, M., Solomon, J., Butscher, A., and Guibas, L. (2012).
Functional maps: A flexible representation of maps between shapes.
ACM Trans. Graph., 31(4):30:1–30:11.

Pinkall, U. and Polthier, K. (1993).
Computing discrete minimal surfaces and their conjugates.
Experimental Mathematics, 2:15–36.

Reuter, M., Wolter, F.-E., and Peinecke, N. (2006).

LaplaceâĂŞBeltrami spectra as ‘shape-dna’ of surfaces and solids.
Computer-Aided Design, 38(4):342–366.

Rustamov, R. M. (2007).
Laplace-Beltrami eigenfunctions for deformation invariant shape representation.
In Proc. SGP, pages 225–233. Eurographics Association.

Solomon, J., Rustamov, R., Guibas, L., and Butscher, A. (2014).
Earth mover’s distances on discrete surfaces.
In Proc. SIGGRAPH, to appear.

Sorkine, O. and Alexa, M. (2007).
As-rigid-as-possible surface modeling.
In Proc. SGP, pages 109–116. Eurographics Association.

Sorkine, O., Cohen-Or, D., Lipman, Y., Alexa, M., Rössl, C., and Seidel, H.-P. (2004).
Laplacian surface editing.
In Proc. SGP, pages 175–184. ACM.

Spielman, D. and Teng, S.-H. (2004).
Nearly linear time algorithms for graph partitioning, graph sparsification, and solving linear systems.
pages 81–90.

Sun, J., Ovsjanikov, M., and Guibas, L. (2009).
A concise and provably informative multi-scale signature based on heat diffusion.
In Proc. SGP, pages 1383–1392. Eurographics Association.

Vaidya, P. (1991).
Solving linear equations with symmetric diagonally dominant matrices by constructing good
preconditioners.
Workshop Talk at the IMA Workshop on Graph Theory and Sparse Matrix Computation.

Wardetzky, M., Mathur, S., Kälberer, F., and Grinspun, E. (2007).
Discrete laplace operators: No free lunch.

In Proceedings of the Fifth Eurographics Symposium on Geometry Processing, SGP ’07, pages 33–37, Aire-la-Ville,
Switzerland, Switzerland. Eurographics Association.

Wojtan, C., Müller-Fischer, M., and Brochu, T. (2011).
Liquid simulation with mesh-based surface tracking.
In ACM SIGGRAPH 2011 Courses, SIGGRAPH ’11, pages 8:1–8:84, New York, NY, USA. ACM.

	Introduction
	Smooth Theory
	Discretization
	Applications

