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Introduction

• Laplace-Beltrami operator (“Laplacian”) provides a basis for
a diverse variety of geometry processing tasks.

• Remarkably common pipeline:
1 simple pre-processing (build f )
2 solve a PDE involving the Laplacian (e.g., ∆u = f )
3 simple post-processing (do something with u)

• Expressing tasks in terms of Laplacian/smooth PDEs
makes life easier at code/implementation level.

• Lots of existing theory to help understand/interpret
algorithms, provide analysis/guarantees.

• Also makes it easy to work with a broad range of
geometric data structures (meshes, point clouds, etc.)
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• Understand the Laplacian in the smooth setting. (Etienne)

• Build the Laplacian in the discrete setting. (Keenan)

• Use Laplacian to implement a variety of methods. (Justin)
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The Interpolation Problem

Ω

∂Ω

f = −1

f = 1

• given:
• region Ω ⊂ R2 with boundary ∂Ω
• function f on ∂Ω

fill in f “as smoothly as possible”

• (what does this even mean?)
• smooth:

• constant functions
• linear functions

• not smooth:
• f not C1

• large variations over short distances
• (‖∇f‖ large)
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Dirichlet Energy

non-smooth f (x)

〈∇f ,∇f 〉

• E(f ) =
∫

Ω〈∇f ,∇f 〉 dA
• properties:

• nonnegative
• zero for constant functions
• measures smoothness

• solution to interpolation problem is
minimizer of E

• how do we find minimum?
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On a Surface
f = −1

f = 1

boundary conditions nonsmooth f (x)

• can still define Dirichlet energy E(f ) =
∫

M〈∇f ,∇f 〉
• ∇E(f ) = −∆f , now ∆ is the Laplace-Beltrami operator of M

• also works in higher dimensions, on discrete graphs/point
clouds, . . .
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Heat Equation Illustrated

time



Boundary Conditions

Ω

∂ΩD

∂ΩN

g0 = 0

f0 = −1

f0 = 1

• can specify ∇f · n̂ on boundary instead
of f :

∆f (x) = 0 x ∈ Ω

f (x) = f0(x) x ∈ ∂ΩD (Dirichlet bdry)

∇f · n̂ = g0(x) x ∈ ∂ΩN (Neumann bdry)

• usually: g0 = 0 (natural bdry conds)

• physical interpretation: free boundary
through which heat cannot flow
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Interpolation with ∆ in Practice

in geometry processing:

• positions

• displacements

• vector fields

• parameterizations

• . . . you name it

Joshi et al

Eck et al

Sorkine and Cohen-Or



Heat Equation with Source
f = −1

∂f
∂t = 1

• what if you add heat sources inside Ω?

df
dt
(x) = g(x) + ∆f (x)

• PDE form: Poisson’s equation

∆f (x) = g(x) x ∈ Ω

f (x) = f0(x) x ∈ ∂Ω

• common variational problem:

min
f

∫
M
〈∇f − v,∇f − v〉 dA

• becomes Poisson problem, g = ∇ · v
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Essential Algebraic Properties I

• linearity: ∆ (f (x) + αg(x)) = ∆f (x) + α∆g(x)

• constants in kernel: ∆α = 0

for functions that vanish on ∂M:

• self-adjoint:
∫

M
f ∆g dA = −

∫
M
〈∇f ,∇g〉 dA =

∫
M

g∆f dA

• negative:
∫

M
f ∆f dA ≤ 0

(intuition: ∆ ≈ an ∞-dimensional negative-semidefinite matrix)
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Solving Poisson’s Equation with Green’s Functions

• the Green’s function G on R2 solves ∆f = g for g = δ

• linearity: if g = ∑ αiδ(x− xi), f = ∑ αiG(x− xi)

• for any g, f = G ∗ g

δ(x) G(x)
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Essential Algebraic Properties II
a function f : M→ R with ∆f = 0 is called harmonic. Properties:

• f is smooth and analytic

• f (x) is the average of f over any disk around x:

f (x) =
1

πr2

∫
B(x,r)

f (y) dA

some harmonic f (x, y)
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πr2
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• maximum principle: f has no local maxima or minima in M

• (can have saddle points)



Essential Geometric Properties I

for a curve γ(u) = (x[u], y[u]) : R→ R2

• ∆γ = (∆x, ∆y) is gradient of arc length

• ∆γ is the curvature normal κn̂

• minimal curves are harmonic

(straight lines)
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Essential Geometric Properties II

for a surface r(u, v) = (x[u, v], y[u, v], z[u, v]) : R → R3

• ∆r = (∆x, ∆y, ∆z) is gradient of surface area

• ∆r is the mean curvature normal 2Hn̂

• minimal surfaces are harmonic!
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• ∆ is intrinsic

• for Ω ⊂ R2, rigid motions of Ω don’t change ∆

• for a surface Ω, isometric deformations of Ω don’t change ∆
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Laplacian Spectrum

• φ is a (Dirichlet) eigenfunction of ∆ on M w/ eigenvalue λ:

∆φ(x) = λφ(x), x ∈ M

0 = φ(x), x ∈ ∂M

1 =
∫

M
〈φ, φ〉 dA.

• recall intuition: ∆ as ∞-dim negative-semidefinite matrix

• expect orthogonal eigenfunctions with negative eigenvalue

• spectrum is discrete: countably many eigenfunctions,

0 ≥ λ1 ≥ λ2 ≥ λ3 . . .
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Laplacian Spectrum of Bunny
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Laplacian Spectrum: Why do We Care?

• expand function f in eigenbasis:

f (x) = ∑
i

αiφi(x)

• Dirichlet energy of f :

E(f ) =
∫

M
〈∇f ,∇f 〉 dA = −

∫
M

f ∆f dA = ∑
i

α2
i λi
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Laplacian Spectrum: Special Cases
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• Fourier basis: M = Rn

• spherical harmonics: M = sphere

Laplacian spectrum generalizes these to any surface



Laplacian Spectrum: Special Cases

perhaps you’ve heard of

• Fourier basis: M = Rn

• spherical harmonics: M = sphere

Laplacian spectrum generalizes these to any surface



Laplacian Spectrum: Special Cases

perhaps you’ve heard of

• Fourier basis: M = Rn

• spherical harmonics: M = sphere

Laplacian spectrum generalizes these to any surface



DISCRETIZATION



Discrete Geometry



Triangle Meshes

• approximate surface by triangles

• “glued together” along edges

• many possible data structures

• half edge, quad edge, corner table, . . .

• for simplicity: vertex-face adjacency list

• (will be enough for our applications!)
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Vertex-Face Adjacency List—Example

# xyz-coordinates of vertices
v 0 0 0
v 1 0 0
v .5 .866 0
v .5 -.866 0

# vertex-face adjacency info
f 1 2 3
f 1 4 2



Manifold



Nonmanifold



Manifold Triangle Mesh

• manifold ⇐⇒ “locally disk-like”

• Which triangle meshes are manifold?

• Two triangles per edge (no “fins”)

• Every vertex looks like a “fan”

• Why? Simplicity.

• (Sometimes not necessary. . . )
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The Cotangent Laplacian

(Assuming a manifold triangle mesh. . . )

(∆u)i ≈ 1
2Ai ∑j∈N (i)

(cot αij + cot βij)(ui − uj)

The set N (i) contains the immediate neighbors of vertex i
The quantity Ai is vertex area—for now: 1/3rd of triangle areas
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Origin of the Cotan Formula?

• Many different ways to derive it

• piecewise linear finite elements (FEM)
• finite volumes
• discrete exterior calculus (DEC)
• . . .

• Re-derived in many different contexts:
• mean curvature flow [Desbrun et al., 1999]
• minimal surfaces [Pinkall and Polthier, 1993]
• electrical networks [Duffin, 1959]
• Poisson equation [MacNeal, 1949]
• (Courant? Frankel? Manhattan Project?)

• All these different viewpoints yield exact same cotan formula

• For three different derivations, see [Crane et al., 2013a]
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MacNeal, 1949



Cotan-Laplacian via Finite Volumes

• Integrate over each dual cell Ci

•
∫

Ci
∆u =

∫
Ci

f (“weak”)

• Right-hand side approximated as Ai fi
• Left-hand side becomes

∫
Ci
∇ · ∇u =

∫
∂Ci

n · ∇u (Stokes’)

• Get piecewise integral over boundary ∑ej∈∂Ci

∫
ej

nj · ∇u

• After some trigonometry: 1
2 ∑j∈N (i)(cot αij + cot βij)(ui− uj)

• (Can divide by Ai to approximate pointwise value)
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Triangle Quality—Rule of Thumb

good triangles bad triangles

(For further discussion see Shewchuk, “What Is a Good Linear Finite Element?”)



Triangle Quality—Delaunay Property

Delaunay Not Delaunay



Local Mesh Improvement

• Some simple ways to improve quality of Laplacian

• E.g., if α + β > π, “flip” the edge; after enough flips, mesh
will be Delaunay [Bobenko and Springborn, 2005]

• Other ways to improve mesh (edge collapse, edge split, . . . )

• Particular interest recently in interface tracking

• For more, see [Dunyach et al., 2013, Wojtan et al., 2011].
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Meshes and Matrices
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(Laplace matrix, ignoring weights!)

• So far, Laplacian expressed as a sum:

• 1
2 ∑j∈N (i)(cot αij + cot βij)(uj − ui)

• For computation, encode using matrices

• First, give each vertex an index
1, . . . , |V|

• Weak Laplacian is matrix C ∈ R|V|×|V|

• Row i represents sum for ith vertex
• Cij =

1
2 cot αij + cot βij for j ∈ N (i)

• Cii = −∑j∈N (i) Cij

• All other entries are zero

• Use sparse matrices!

• (MATLAB: sparse, SuiteSparse:
cholmod_sparse, Eigen: SparseMatrix)
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cholmod_sparse, Eigen: SparseMatrix)
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(Laplace matrix, ignoring weights!)
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Mass Matrix

• Matrix C encodes only part of Laplacian—recall that

(∆u)i = 1
2Ai ∑j∈N (i)

(cot αij + cot βij)(uj − ui)

• Still need to incorporate vertex areas Ai

• For convenience, build diagonal mass matrix M ∈ R|V|×|V|:

M =

 A1
. . .
A|V|


• Entries are just Mii = Ai (all other entries are zero)

• Laplace operator is then L := M−1C

• Applying L to a column vector u ∈ R|V| “implements” the
cotan formula shown above
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Discrete Poisson / Laplace Equation

• Poisson equation ∆u = f becomes linear algebra problem:

Lu = f

• Vector f ∈ R|V| is given data; u ∈ R|V| is unknown.

• Discrete approximation u approaches smooth solution u as
mesh is refined (for smooth data, “good” meshes. . . ).

• Laplace is just Poisson with “zero” on right hand side!
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Discrete Heat Equation

• Heat equation du
dt = ∆u must also be discretized in time

• Replace time derivative with finite difference:

du
dt
⇒ uk+1 − uk

h
, h > 0︸ ︷︷ ︸

“time step”

• How (or really, “when”) do we approximate ∆u?

• Explicit: (uk+1 − uk)/h = Luk (cheaper to compute)

• Implicit: (uk+1 − uk)/h = Luk+1 (more stable)

• Implicit update becomes linear system (I− hL)uk+1 = uk
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Discrete Eigenvalue Problem

• Smallest eigenvalue problem ∆u = λu becomes

Lu = λu

for smallest nonzero eigenvalue λ.

• Can be solved using (inverse) power method:
• Pick random u0
• Until convergence:

• Solve Luk+1 = uk
• Remove mean value from uk+1
• uk+1 ← uk+1/|uk+1|

• By prefactoring L, overall cost is nearly identical to solving
a single Poisson equation!
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Properties of cotan-Laplace

• Always, always, always positive-semidefinite fTCf ≥ 0
(even if cotan weights are negative!)

• Why? fTCf is identical to summing ||∇f ||2!
• No boundary⇒ constant vector in the kernel / cokernel
• Why does it matter? E.g., for Poisson equation:

• solution is unique only up to constant shift
• if RHS has nonzero mean, cannot be solved!

• Exhibits maximum principle on Delaunay mesh
• Delaunay: triangle circumcircles are empty
• Maximum principle: solution to Laplace equation has no

interior extrema (local max or min)
• NOTE: non-Delaunay meshes can also exhibit max

principle! (And often do.) Delaunay sufficient but not
necessary. Currently no nice, simple necessary condition on
mesh geometry.

• For more, see [Wardetzky et al., 2007]
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Numerical Issues—Symmetry

• “Best” case for sparse linear systems:

symmetric positive-(semi)definite (AT= A, xTAx ≥ 0 ∀x)

• Many good solvers (Cholesky, conjugate gradient, . . . )

• Discrete Poisson equation looks like M−1Cu = f

• C is symmetric, but M−1C is not!

• Can easily be made symmetric:

Cu = Mf

• In other words: just multiply by vertex areas!

• Seemingly superficial change. . .

• . . . but makes computation simpler / more efficient
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Numerical Issues—Symmetry, continued

• Can also make heat equation symmetric

• Instead of (I− hL)uk+1 = uk, use

(M− hC)uk+1 = Muk

• What about smallest eigenvalue problem Lu = λu?
• Two options:

1 Solve generalized eigenvalue problem Cu = λMu
2 Solve M−1/2CM−1/2ũ = λũ, recover u = M−1/2ũ

• Note: M−1/2 just means “put 1/
√
Ai on the diagonal!”
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Numerical Issues—Direct vs. Iterative Solvers

• Direct (e.g., LLT, LU, QR, . . . )

• pros: great for multiple right-hand sides; (can be) less
sensitive to numerical instability; solve many types of
problems, under/overdetermined systems.

• cons: prohibitively expensive for large problems; factors
are quite dense for 3D (volumetric) problems

• Iterative (e.g., conjugate gradient, multigrid, . . . )
• pros: can handle very large problems; can be implemented

via callback (instead of matrix); asymptotic running times
approaching linear time (in theory. . . )

• cons: poor performance without good preconditioners; less
benefit for multiple right-hand sides; best-in-class methods
may handle only symmetric positive-(semi)definite systems

• No perfect solution! Each problem is different.
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Solving Equations in Linear Time

• Is solving Poisson, Laplace, etc., truly linear time in 2D?

• Jury is still out, but keep inching forward:
• [Vaidya, 1991]—use spanning tree as preconditioner
• [Alon et al., 1995]—use low-stretch spanning trees
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• Best theoretical results may lack practical implementations!

• Older codes benefit from extensive low-level optimization
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behavior “inside” domain Ω

• Also need to say how solution behaves on boundary ∂Ω

• Often trickiest part (both mathematically & numerically)

• Very easy to get wrong!
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• What about Neumann boundary conditions?
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• Can we prescribe the derivative at both ends?

• No! A line can have only one slope!

• In general: solutions to PDE may not exist for given BCs
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Laplace w/ Neumann Boundary Conditions (2D)

• What about Neumann boundary
conditions?

• Still want to solve ∆φ = 0

• Want to prescribe normal derivative
n · ∇φ

• Wasn’t always possible in 1D. . .

• In 2D, we have divergence theorem:∫
Ω

0 !
=
∫

Ω
∆φ =

∫
Ω
∇ ·∇φ =

∫
∂Ω

n · ∇φ

• Conclusion: can only solve ∆φ = 0 if
Neumann BCs have zero mean!
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Discrete Boundary Conditions - Dirichlet

• Suppose we want to solve ∆u = f s.t. u|∂Ω = g (Poisson
equation w/ Dirichlet boundary conditions)

• Discretized Poisson equation as Cu = Mf

• Let I, B denote interior, boundary vertices, respectively. Get[
CII CIB

CBI CBB

] [
uI

uB

]
=

[
MII 0
0 MBB

] [
fI
fB

]
• Since uB is known (boundary values), solve just

CIIuI = MIIfI − CIBuB for uI (right-hand side is known).

• Can skip matrix multiply and compute entries of RHS
directly: Aifi −∑j∈N∂(i)(cot αij + cot βij)uj

• Here N∂(i) denotes neighbors of i on the boundary
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Discrete Boundary Conditions - Neumann

• Integrate both sides of ∆u = f over cell Ci (“finite volume”)∫
Ci

f !
=
∫

Ci

∆u =
∫

Ci

∇ · ∇u =
∫

∂Ci

n · ∇u

• Gives usual cotangent formula for interior vertices; for
boundary vertex i, yields

Aii
!
= 1

2 (ga + gb) +
1
2 ∑

j∈Nint

(cot αij + cot βij)(uj − ui)

• Here ga, gb are prescribed normal derivatives; just subtract
from RHS and solve Cu = Mf as usual



Discrete Boundary Conditions - Neumann

• Other possible boundary conditions (e.g., Robin)

• Dirichlet, Neumann most common—implementation of
other BCs will be similar

• When in doubt, return to smooth equations and integrate!

• . . . and make sure your equation has a solution!

• Solver will NOT always tell you if there’s a problem!

• Easy test? Compute the residual r := Ax− b. If the relative
residual ||r||∞/||b||∞ is far from zero (e.g., greater than
10−14 in double precision), you did not actually solve your
problem!
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• Have spent a lot of time on triangle meshes. . .

• . . . plenty of other ways to describe a surface!

• E.g., points are increasingly popular (due to 3D scanning)

• Also: more accurate discretization on triangle meshes
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products
• see [Bommes et al., 2013] for further
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• More generally: meshes with quads and
triangles and . . .

• Nice discretization:
[Alexa and Wardetzky, 2011]

• Can then solve all the same problems
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Dual Mesh

barycentric circumcentric (superimposed)

• Earlier saw Laplacian discretized via dual mesh

• Different duals lead to operators with different accuracy
• Space of orthogonal duals explored by [Mullen et al., 2011]
• Leads to many applications in geometry processing

[de Goes et al., 2012, de Goes et al., 2013, de Goes et al., 2014]
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Volumes / Tetrahedral Meshes

• Same problems (Poisson, Laplace, etc.)
can also be solved on volumes

• Popular choice: tetrahedral meshes
(graded, conform to boundary, . . . )

• Many ways to get Laplace matrix

• One nice way: discrete exterior calculus
(DEC) [Hirani, 2003, Desbrun et al., 2005]

• Just incidence matrices (e.g., which tets
contain which triangles?) & primal /
dual volumes (area, length, etc.).

• Added bonus: play with definition of
dual to improve accuracy
[Mullen et al., 2011].
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...and More!

• Covered some standard discretizations

• Many possibilities (level sets, hex
meshes. . . )

• Often enough to have gradient G and
inner product W.

• (weak!) Laplacian is then C = GTWG
(think Dirichlet energy)

• Key message:
build Laplace; do lots of cool stuff.
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APPLICATIONS



Remarkably Common Pipeline

{simple pre-processing}

−→∆
(−1)

−→ {simple post-processing}



Common Refrain

“Our method boils down to
‘backslash’ in Matlab!”



Reminder: Model Equations

∆f = 0 Laplace equation
Linear solve

∆f = g Poisson equation
Linear solve

ft = ∆f Heat equation
ODE time-step

∆φi = λiφi Vibration modes
Eigenproblem
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Reminder: Variational Interpretation

minf (x)
∫

Σ ‖∇f (x)‖2 dA
l <calculus>

∆f (x) = 0

The (inverse) Laplacian wants to
make functions smooth.

“Elliptic regularity”

∆f = 0
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Application: Mesh Parameterization

Want smooth f : M→ R2.

∆f = 0



Variational Approach

minf :M→R2
∫
‖∇f‖2

Does this work?

f (x) ≡ const.

∆f = 0
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Harmonic Parameterization

min f :M→R2

f |∂M fixed

∫
‖∇f‖2

[Eck et al., 1995]

∆f = 0 in M\∂M, with f |∂M fixed

∆f = 0
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Recall: Green’s Function

∆gp = δp for p ∈ M

∆f = g



Application: Biharmonic Distances

db(p, q) ≡ ‖gp− gq‖2

[Lipman et al., 2010], formula in [Solomon et al., 2014]

∆f = g



Hodge Decomposition

~v(x) = R90◦∇g +∇f +~h(x)

• Divergence-free part: R90◦∇g
• Curl-free part: ∇f
• Harmonic part:~h(x) (=~0 if surface has no holes)

∆f = g



Computing the Curl-Free Part

minf (x)
∫

Σ ‖∇f (x)−~v(x)‖2 dA
l <calculus>

∆f (x) = ∇ ·~v(x)
Get divergence-free part as~v(x)−∇f (x) (when~h ≡~0)

∆f = g



Application: Vector Field Design

∆f = −K̄ −→~v(x) = ∇f (x)

[Crane et al., 2010, de Goes and Crane, 2010]

∆f = g



Application: Earth Mover’s Distance

min
~J(x)

∫
M
‖~J(x)‖

such that~J = R90◦∇g +∇f +~h(x)
∆f = ρ1 − ρ0

[Solomon et al., 2014]

∆f = g



Reminder: Model Equations

∆f = 0 Laplace equation
Linear solve

∆f = g Poisson equation
Linear solve

ft = ∆f Heat equation
ODE time-step

∆φi = λiφi Vibration modes
Eigenproblem



Generalizing Gaussian Blurs

Gradient descent on
∫
‖∇f (x)‖2 dx:

∂f (x,t)
∂t = ∆xf (x, t)

with f (·, 0) ≡ f0(·).

Image by M. Bottazzi

ft = ∆f



Application: Implicit Fairing

Idea: Take f0(x) to be the coordinate function.

Detail: ∆ changes over time.
[Desbrun et al., 1999]

ft = ∆f
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Alternative: Screened Poisson Smoothing

Simplest incarnation of [Chuang and Kazhdan, 2011]:

minf (x) α2‖f − f0‖2 + ‖∇f‖2

l

(α2I− ∆)f = α2f0

∆f = g



Interesting Connection

(Semi-)Implicit Euler:
(I− hL)uk+1 = uk

Screened Poisson:
(α2I− ∆)f = α2f0

One time step of implicit Euler
is screened Poisson.

Accidentally replaced one PDE with another!

ft = ∆f → ∆f = g
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Application: The “Heat Method”

Eikonal equation for geodesics:
‖∇φ‖2 = 1

=⇒ Need direction of ∇φ.

Idea:
Find u such that ∇u is parallel to

geodesic.

ft = ∆f and ∆f = g
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Idea:
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geodesic.

ft = ∆f and ∆f = g



Application: The “Heat Method”

1 Integrate u′ = ∇u (heat equation) to time t� 1.

2 Define vector field X ≡ − ∇u
‖∇u‖2

.

3 Solve least-squares problem ∇φ ≈ X ⇐⇒ ∆φ = ∇ ·X.

Blazingly fast!
[Crane et al., 2013b]

ft = ∆f and ∆f = g



Reminder: Model Equations

∆f = 0 Laplace equation
Linear solve

∆f = g Poisson equation
Linear solve

ft = ∆f Heat equation
ODE time-step

∆φi = λiφi Vibration modes
Eigenproblem



Laplace-Beltrami Eigenfunctions

Image by B. Vallet and B. Lévy

Use eigenvalues and eigenfunctions to
characterize shape.

∆φi = λiφi



Intrinsic Laplacian-Based Descriptors

All computable from eigenfunctions!

• HKS(x; t) = ∑i eλitφi(x)2 [Sun et al., 2009]

• GPS(x) =
(

φ1(x)√
−λ1

, φ2(x)√
−λ2

, . . .
)

[Rustamov, 2007]

• WKS(x; e) = Ce ∑i φi(x)2 exp
(
− 1

2σ2 (e− log(−λi))
)

[Aubry et al., 2011]

Many others—or learn a function of eigenvalues!
[Litman and Bronstein, 2014]

∆φi = λiφi



Example: Heat Kernel Signature

Heat diffusion encodes geometry for all times t ≥ 0!

[Sun et al., 2009]

HKS(x; t) ≡ kt(x, x)

“Amount of heat diffused from
x to itself over at time t.”

• Signature of point x is a
function of t ≥ 0

• Intrinsic descriptor

ft = ∆f



HKS via Laplacian Eigenfunctions

∆φi = λiφi, f0(x) = ∑
i

aiφi(x)

∂f (x, t)
∂t

= ∆f with f (x, 0) ≡ f0(x)

=⇒ f (x, t) = ∑
i

aieλitφi(x)

=⇒ HKS(x; t) ≡ kt(x, x)
= ∑

i
eλitφi(x)2

∆φi = λiφi
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Application: Shape Retrieval

Solve problems like shape similarity search.

“Shape DNA” [Reuter et al., 2006]:
Identify a shape by its vector of Laplacian eigenvalues

0 1 2 3

0

1

2

3

0 1 2 3

0

1

2

3

∆φi = λiφi



Different Application: Quadrangulation

Connect critical points (well-spaced) of φi
in Morse-Smale complex.

[Dong et al., 2006]

∆φi = λiφi



Other Ideas I

• Mesh editing: Displacement of vertices and
parameters of a deformation should be smooth
functions along a surface
[Sorkine et al., 2004, Sorkine and Alexa, 2007] (and
many others)



Other Ideas II

• Surface reconstruction: Poisson equation helps
distinguish inside and outside [Kazhdan et al., 2006]

• Regularization for mapping: To compute
φ : M1 → M2, ask that φ ◦ ∆1 ≈ ∆2 ◦ φ

[Ovsjanikov et al., 2012]



For Slides

http://ddg.cs.columbia.edu/
SGP2014/LaplaceBeltrami.pdf

http://ddg.cs.columbia.edu/SGP2014/LaplaceBeltrami.pdf
http://ddg.cs.columbia.edu/SGP2014/LaplaceBeltrami.pdf
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