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Projective geometric algebra:
A Swiss army knife
for graphics and games
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1987: “Red’s Dream”, Pixar









2006: “The Borromean Rings”, TU-Berlin
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2015: “conform!”, TU-Berlin







By euclidean geometry we mean
the geometry of euclidean space E”".
not euclidean vector space R".
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Uniform representation of points, lines, and planes.




Wish list for doing

Calculate meet and Jjoin,

EUC“deﬂn geome‘fr‘y | also for parallel elements.

Uniform representation of points, lines, and planes.
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Wish list for doing

lCaIcqu‘re meet and join,

euclidean geome‘l'r'y also for parallel elements.

Uniform representation of points, lines, and plcme;'

Single representation for @

operators and operands.
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Compact, expressive syntax Coordinate-free.

for formulas and constructions.
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Main Idea

The main idea is to represent geometric primitives (points,
lines, planes) as numbers which can be multiplied with each
other using a geometric product.



Example 1: A geometric construction

Task: Given a point P and a line M in E3, find the unique line
through P perpendicular to I.



Example 1: A geometric construction

n~"\_

Step 1: N - P is the plane through P perpendicular to .



Example 1: A geometric construction

(M-P)ATT
n—\_

Step 2: (M- P) A N is the intersection of this plane with .



Example 1: A geometric construction

h;ﬂ'\m/w

M-P)AT

\

Step 3: ((M-P) A M) Vv P is the joining line of this point with P.




Example 2: A kaleidoscope

Task: Given mirror planes a and b and some geometry G,
represent the kaleidoscope generated by the mirrors and G.



Example 2: A kaleidoscope

Step 1: bGb is the reflection of G in b, aGa the reflection in a.



Example 2: A kaleidoscope

Solution: Form “sandwiches” aGa, bGb, abGba, abaGaba etc.,
subject to the relation (ab)® = 1.
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QUATERNIONS: An algebra for R3
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Quaternions (1843)

» Imaginary quaternions. IH : (x, y, z) € R3 < xi + yj+ zk.
» Unit quaternions. U:={gcH |gg=1}.
» “Geometric” product. For g,h € TH,

gh=-g-h+gxh

» Exponential map IH — U. g € U can be written as
g = e"(= cost + sin tv) with v € TH and v? = —1.

» Rotations as sandwiches. For x < R® and g € U, gxg is
a rotation of x around the axis v through an angle 2t.

» ODE'’s for Euler top.
g=gV
. 1
Mc = E(VCMC - Mcvc)



Quaternions (1843)

BUT:
Quaternions don’t allow for representing
lines or planes, only points.

Lines Planas



Quaternions (1843)

AND:
Quaternions don’t allow for representing
translations,
only rotations around the origin.



Grassmann algebra

Hermann Grassmann (1807-1877)
Ausdehnungslehre (1844).
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Grassmann algebra

BUT:
Grassmann algebra doesn’t include
Inner or cross products,

only outer product
(no metric).



William Clifford

William Clifford (1845-1879)

Inventor of biquaternions and of geometric algebra



Biquaternions (1873)

Clifford’s first great discovery, biquaternions, does for E® what
H does for R3.

» Biquaternions: g + ¢h where €2 ¢ {1, —-1,0}.

» When ¢ = 0, called dual quaternions DH.

» All the listed features of H generalize to DH.

“Geometric” product.

Exponential map from imaginary DH to unit DH.
Unit DH: rotations and translations as sandwiches.
» ODE'’s for free top.

» But, like the quaternions, it does not include meet and join
operators.

vvyy
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Geometric algebra (1878)

The main idea: add an inner product to a Grassmann algebra.

>

An inner product a - b is a symmetric bilinear form defined
on 1-vectors.

It is characterized by its signature, a triple (p, n, z), telling
how many basis vectors square to 1, -1, and 0 (resp.).

Define a geometric product on 1-vectors by:
ab:=a-b+aAb

It can be extended to an associative product on the whole
Grassmann algebra to produce a geometric algebra.

It is written Ry p > Or RY .- Or P(Rp,n,z) or P(R;’_;’nvz),
depending on the base Grassmann algebra.
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Geometric algebra for euclidean geometry

» Exercise: Rz (or Ré,o,o) is the desired geometric algebra
for euclidean vector space R3.

Exercise: Reto,o ~ H.

Non-euclidean geometies. P(R3 o) is @ geometric algebra
for the 2-sphere, and P(RRz 1 o) for the hyperbolic plane.

But a GA for E"” remained elusive 100 years after Clifford’s
early death (1879).
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Example: n = 2, the euclidean plane




Example: n = 2, the euclidean plane

<[a1,b1,c1], [ag,bg, CQ]> = aijas + bybo = cosa



Example: n = 2, the euclidean plane

([a1, b1, c1], [z, b2, C2]) = @1@2 + b1b2 = COS @
The correct GA is thus P(RR3 ; ;).



Basis vectors for P(R3 ;)

\!:'z L Ez/
RS

SEN

Note: We have renamed es as ey and E3 as Eg.



Multiplication table for P(R3 4 ;)

Eo :=eqes, Ei :=ese9, Esx:=epeq, |:=€peq€s

| |1 Jeo |er |e2 [Eo [Ef [E2 [1 |

1 1 € e eo Eo E; E, |

€ (0] 0 E2 —E1 | 0 0 0
e e —E5 1 Eo | e | —eg| Eq4
(-3} e E; —Eq 1 —e1| €p | E,
Eo Eo | I —€e2| €1 -1 | —E5 E4 —€p
Ei |E; | O | —eo| E2 | O 0 0
Ex || E2 |0 |e || —-E{O0 [0 |O

I |1 |0 |Ef E,|—el0 |0 |O




Geometric algebra notation

(X) is grade-projection operator: the grade-k part of X.
A k-vector satisfies X = (X).
Write 1-vectors (lines) using small Roman letters a, b, etc.

Write 2-vectors (points) using large Roman letters A, B,
etc..

vV v .vY



Euclidean and ideal elements

v

For a k-vector X € P(Rj , ;), X is a scalar.

» A point or line satisfying X? # 0 is euclidean.
» A point or line satisfying X? = 0 is ideal.
> e is the ideal line, E1 and E, are the ideal points in the x-
and y-directions.
Ideal points can be identified with free vectors.
A euclidean line a can be normalized so |ja|| = 1.
A euclidean point P can be normalized so ||P|| = 1.
An ideal point V can be normalized so ||V||- = 1.
» Ideal norm || || based on signature (2,0, 0) on eg.

> = (%Y, 0)lleo = VX2 + y2.

We normalize everywhere we can!

vV vy VvV Yy

v



Basis vectors for P(R3 ;)

\Ez . € E, /

N N\ . . 7°
y-direction ideal line x-direction
% e
origin
Ny

E,




ab

Assume a and b are two normalized euclidean lines (1-vectors).

acos(a«b)

If a and b intersect in a normalized euclidean point P:
ab=a-b+aAb=cosa+(sina)P

where « is the oriented angle between the lines.



ab

Assume a and b are two normalized euclidean lines (1-vectors).

If a and b intersect in a normalized ideal point V:
ab =1+ dypV

where djp, is the oriented distance between the lines.



ab

The formula correctly differentiates between the two cases and
provides the appropriate weighting factor:

» an angle when the lines intersect, and
» adistance when they are parallel.



ab

The formula correctly differentiates between the two cases and
provides the appropriate weighting factor:

» an angle when the lines intersect, and
» adistance when they are parallel.

This interweaving of the euclidean and the ideal
is a recurring theme in P(RR} g ;).



aP

aP = (aP); + (aP)3



PQand PVvQ

\Q “xQ

Py
Q
/P%P

)(Q/é, \

PQ = <PQ>0 + <PQ>2
=-1+PxQ




Reflections, rotations, translations, ...

aXa

—




Reflections, rotations, translations, ...




Reflections, rotations, translations, ...




Isometries

More useful facts:
» e'P produces a 1-parameter family of rotors.

» They are rotations around the euclidean point P.
» They are translations with direction perpendicular to the
direction P for ideal P.

> P(Rj3,¢) is isomorphic to the “planar quaternions”.



3D

For E® the corresponding PGA is P(R3 ;).
» The even subalgebra P(R;fgj) is isomorphic to DH.
» ¢ € DH maps to the pseudoscalar | € P(R3 , ;).
» Thus, Clifford’s two big discoveries are combined within
P(R30,1)-
» Things are much more interesting since there are 2-vectors
whose squares are not scalars: linear line complexes.



Example 3: Screw motions

Task: Given a line X in E3, represent the screw motion around
¥ with given pitch.



Example 3: Screw motions

Step 1: The rotor given by e'> is a rotation: the sandwich
e'>Ge* rotates G around X thru angle 2t.



Example 3: Screw motions

Step 2: The rotor given by e?! is a translation along ¥ of
distance 2d (a “rotation” around the polar line of ¥).



Example 3: Screw motions

Step 3:The rotor given by e(t+9)* is a screw motion combining
these two motions, with pitch d : t.



Conclusion

Wish list for doing - -
. Calculate meet and join,
EUCI idean geomeTrY also for parallel elements.

Uniform representation of points, lines, and plunes.’

Single representation for @

operators and operands.

Compact, expressive syntax Coordinate-free.
for formulas and constructions.

Physics-ready

5 AL
Backward-compatible




Conclusion

Additional insights:
Euclidean and ideal norms form an organic whole.
Contains H and DH as subalgebras.

v

»
» Much remains to be discovered and worked out.
>

Bonus: It’s fully metric-neutral if you want to do spherical or
hyperbolic geometry!



More information

» Author’s copy: http://arxiv.org/abs/1411.6502, "Geometric
algebras for euclidean,geometry”

» Preprint: http://arxiv.org/abs/1501.06511, "Doingeuclidean
plane geometry using projective geometric algebra”

» These slides and related resources:
http://page.math.tu-berlin.de/"gunn/gsumm2016

» Thank you for your attention!



